Monomial ideals and the failure of the Strong Lefschetz property
AbstractWe give a sharp lower bound for the Hilbert function in degree d of artinian quotients $$\Bbbk [x_1,\ldots ,x_n]/I$$ k [ x 1 , … , x n ] / I failing the Strong Lefschetz property, where I is a monomial ideal generated in degree $$d \ge 2$$ d ≥ 2 . We also provide sharp lower bounds for other classes of ideals, and connect our result to the classification of the Hilbert functions forcing the Strong Lefschetz property by Zanello and Zylinski.