scholarly journals Linear syzygies of Stanley-Reisner ideals

2001 ◽  
Vol 89 (1) ◽  
pp. 117 ◽  
Author(s):  
V Reiner ◽  
V Welker

We give an elementary description of the maps in the linear strand of the minimal free resolution of a square-free monomial ideal, that is, the Stanley-Reisner ideal associated to a simplicial complex $\Delta$. The description is in terms of the homology of the canonical Alexander dual complex $\Delta^*$. As applications we are able to prove for monomial ideals and $j=1$ a conjecture of J. Herzog giving lower bounds on the number of $i$-syzygies in the linear strand of $j^{th}$-syzygy modules show that the maps in the linear strand can be written using only $\pm 1$ coefficients if $\Delta^*$ is a pseudomanifold exhibit an example where multigraded maps in the linear strand cannot be written using only $\pm 1$ coefficients compute the entire resolution explicitly when $\Delta^*$ is the complex of independent sets of a matroid

2011 ◽  
Vol 18 (spec01) ◽  
pp. 925-936
Author(s):  
Rahim Zaare-Nahandi

In this paper, by a modification of a previously constructed minimal free resolution for a transversal monomial ideal, the Betti numbers of this ideal is explicitly computed. For convenient characteristics of the ground field, up to a change of coordinates, the ideal of t-minors of a generic pluri-circulant matrix is a transversal monomial ideal. Using a Gröbner basis for this ideal, it is shown that the initial ideal of a generic pluri-circulant matrix is a stable monomial ideal when the matrix has two square blocks. By means of the Eliahou-Kervaire resolution for stable monomial ideals, the Betti numbers of this initial ideal is computed and it is proved that for some significant values of t, this ideal has the same Betti numbers as the corresponding transversal monomial ideal. The ideals treated in this paper naturally arise in the study of generic singularities of algebraic varieties.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 605
Author(s):  
Lukas Katthän

In this short note we give an elementary description of the linear part of the minimal free resolution of a Stanley-Reisner ring of a simplicial complex Δ . Indeed, the differentials in the linear part are simply a compilation of restriction maps in the simplicial cohomology of induced subcomplexes of Δ . Along the way, we also show that if a monomial ideal has at least one generator of degree 2, then the linear strand of its minimal free resolution can be written using only ± 1 coefficients.


10.37236/4894 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mina Bigdeli ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Antonio Macchia

Let $I\subset K[x_1,\ldots,x_n]$ be  a zero-dimensional monomial ideal, and $\Delta(I)$ be the simplicial complex whose Stanley--Reisner ideal is the polarization of $I$. It follows from a result of Soleyman Jahan that $\Delta(I)$ is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that  $\Delta(I)$ is even vertex decomposable. The ideal $L(I)$, which is defined to be the Stanley--Reisner ideal of the Alexander dual of $\Delta(I)$, has a linear resolution which is cellular and supported on a regular CW-complex. All powers of $L(I)$ have a linear resolution. We compute $\mathrm{depth}\ L(I)^k$ and show that $\mathrm{depth}\ L(I)^k=n$ for all $k\geq n$.


2004 ◽  
Vol 189 (1-3) ◽  
pp. 263-278 ◽  
Author(s):  
Rahim Zaare-Nahandi ◽  
Rashid Zaare-Nahandi

1999 ◽  
Vol 153 ◽  
pp. 141-153 ◽  
Author(s):  
Jürgen Herzog ◽  
Takayuki Hibi

AbstractA componentwise linear ideal is a graded ideal I of a polynomial ring such that, for each degree q, the ideal generated by all homogeneous polynomials of degree q belonging to I has a linear resolution. Examples of componentwise linear ideals include stable monomial ideals and Gotzmann ideals. The graded Betti numbers of a componentwise linear ideal can be determined by the graded Betti numbers of its components. Combinatorics on squarefree componentwise linear ideals will be especially studied. It turns out that the Stanley-Reisner ideal IΔ arising from a simplicial complex Δ is componentwise linear if and only if the Alexander dual of Δ is sequentially Cohen-Macaulay. This result generalizes the theorem by Eagon and Reiner which says that the Stanley-Reisner ideal of a simplicial complex has a linear resolution if and only if its Alexander dual is Cohen-Macaulay.


Author(s):  
J. William Hoffman ◽  
Haohao Wang

In this paper, we study a family of rational monomial parametrizations. We investigate a few structural properties related to the corresponding monomial ideal [Formula: see text] generated by the parametrization. We first find the implicit equation of the closure of the image of the parametrization. Then we provide a minimal graded free resolution of the monomial ideal [Formula: see text], and describe the minimal graded free resolution of the symmetric algebra of [Formula: see text]. Finally, we provide a method to compute the defining equations of the Rees algebra of [Formula: see text] using three moving planes that follow the parametrization.


2015 ◽  
Vol 22 (spec01) ◽  
pp. 745-756 ◽  
Author(s):  
Rahim Rahmati-Asghar ◽  
Siamak Yassemi

In this paper we introduce a class of monomial ideals, called k-decomposable ideals. It is shown that the class of k-decomposable ideals is contained in the class of monomial ideals with linear quotients, and when k is large enough, the class of k-decomposable ideals is equal to the class of ideals with linear quotients. In addition, it is shown that a d-dimensional simplicial complex is k-decomposable if and only if the Stanley-Reisner ideal of its Alexander dual is a k-decomposable ideal, where k ≤ d. Moreover, it is shown that every k-decomposable ideal is componentwise k-decomposable.


2017 ◽  
Vol 120 (1) ◽  
pp. 59 ◽  
Author(s):  
N. Altafi ◽  
N. Nemati ◽  
S. A. Seyed Fakhari ◽  
S. Yassemi

Let $S = \mathbb{K}[x_1, \dots, x_n]$ be the polynomial ring over a field $\mathbb{K}$. In this paper we present a criterion for componentwise linearity of powers of monomial ideals. In particular, we prove that if a square-free monomial ideal $I$ contains no variable and some power of $I$ is componentwise linear, then $I$ satisfies the gcd condition. For a square-free monomial ideal $I$ which contains no variable, we show that $S/I$ is a Golod ring provided that for some integer $s\geq 1$, the ideal $I^s$ has linear quotients with respect to a monomial order.


1995 ◽  
Vol 118 (2) ◽  
pp. 245-257 ◽  
Author(s):  
Winfried Bruns ◽  
Jürgen Herzog

This paper was initiated by a question of Eisenbud who asked whether the entries of the matrices in a minimal free resolution of a monomial ideal (which, after a suitable choice of bases, are monomials) divide the least common multiple of the generators of the ideal. We will see that this is indeed the case, and prove it by lifting the multigraded resolution of an ideal, or more generally of a multigraded module, keeping track of how the shifts ‘deform’' in such a lifting; see Theorem 2·1 and Corollary 2·2.


Sign in / Sign up

Export Citation Format

Share Document