scholarly journals The Geometry of the Weak Lefschetz Property and Level Sets of Points

2008 ◽  
Vol 60 (2) ◽  
pp. 391-411 ◽  
Author(s):  
Juan C. Migliore

AbstractIn a recent paper, F. Zanello showed that level Artinian algebras in 3 variables can fail to have the Weak Lefschetz Property (WLP), and can even fail to have unimodal Hilbert function. We show that the same is true for the Artinian reduction of reduced, level sets of points in projective 3-space. Our main goal is to begin an understanding of how the geometry of a set of points can prevent its Artinian reduction from having WLP, which in itself is a very algebraic notion. More precisely, we produce level sets of points whose Artinian reductions have socle types 3 and 4 and arbitrary socle degree ≥ 12 (in the worst case), but fail to have WLP. We also produce a level set of points whose Artinian reduction fails to have unimodal Hilbert function; our example is based on Zanello's example. Finally, we show that a level set of points can have Artinian reduction that has WLP but fails to have the Strong Lefschetz Property. While our constructions are all based on basic double G-linkage, the implementations use very different methods.

2009 ◽  
Vol 29 (3) ◽  
pp. 919-940 ◽  
Author(s):  
KATRIN GELFERT ◽  
MICHAŁ RAMS

AbstractWe study the Hausdorff dimension for Lyapunov exponents for a class of interval maps which includes several non-hyperbolic situations. We also analyze the level sets of points with given lower and upper Lyapunov exponents and, in particular, with zero lower Lyapunov exponent. We prove that the level set of points with zero exponent has full Hausdorff dimension, but carries no topological entropy.


Author(s):  
Nasrin Altafi ◽  
Samuel Lundqvist

AbstractWe give a sharp lower bound for the Hilbert function in degree d of artinian quotients $$\Bbbk [x_1,\ldots ,x_n]/I$$ k [ x 1 , … , x n ] / I failing the Strong Lefschetz property, where I is a monomial ideal generated in degree $$d \ge 2$$ d ≥ 2 . We also provide sharp lower bounds for other classes of ideals, and connect our result to the classification of the Hilbert functions forcing the Strong Lefschetz property by Zanello and Zylinski.


2007 ◽  
Vol 17 (04) ◽  
pp. 297-304 ◽  
Author(s):  
OLIVIER DEVILLERS ◽  
VIDA DUJMOVIĆ ◽  
HAZEL EVERETT ◽  
SAMUEL HORNUS ◽  
SUE WHITESIDES ◽  
...  

Given a set of n points in the plane, we consider the problem of computing the circular ordering of the points about a viewpoint q and efficiently maintaining this ordering information as q moves. In linear space, and after O(n log n) preprocessing time, our solution maintains the view at a cost of O( log n) amortized time (resp.O( log 2 n) worst case time) for each change. Our algorithm can also be used to maintain the set of points sorted according to their distance to q .


2021 ◽  
Author(s):  
Eswara Venkata Kumar Dhulipala

A Dubin's Travelling Salesman Problem (DTSP) of finding a minimum length tour through a given set of points is considered. DTSP has a Dubins vehicle, which is capable of moving only forward with constant speed. In this paper, first, a worst case upper bound is obtained on DTSP tour length by assuming DTSP tour sequence same as Euclidean Travelling Salesman Problem (ETSP) tour sequence. It is noted that, in the worst case, \emph{any algorithm that uses of ETSP tour sequence} is a constant factor approximation algorithm for DTSP. Next, two new algorithms are introduced, viz., Angle Bisector Algorithm (ABA) and Modified Dynamic Programming Algorithm (MDPA). In ABA, ETSP tour sequence is used as DTSP tour sequence and orientation angle at each point $i_k$ are calculated by using angle bisector of the relative angle formed between the rays $i_{k}i_{k-1}$ and $i_ki_{k+1}$. In MDPA, tour sequence and orientation angles are computed in an integrated manner. It is shown that the ABA and MDPA are constant factor approximation algorithms and ABA provides an improved upper bound as compared to Alternating Algorithm (AA) \cite{savla2008traveling}. Through numerical simulations, we show that ABA provides an improved tour length compared to AA, Single Vehicle Algorithm (SVA) \cite{rathinam2007resource} and Optimized Heading Algorithm (OHA) \cite{babel2020new,manyam2018tightly} when the Euclidean distance between any two points in the given set of points is at least $4\rho$ where $\rho$ is the minimum turning radius. The time complexity of ABA is comparable with AA and SVA and is better than OHA. Also we show that MDPA provides an improved tour length compared to AA and SVA and is comparable with OHA when there is no constraint on Euclidean distance between the points. In particular, ABA gives a tour length which is at most $4\%$ more than the ETSP tour length when the Euclidean distance between any two points in the given set of points is at least $4\rho$.


Author(s):  
Tadahito Harima ◽  
Toshiaki Maeno ◽  
Hideaki Morita ◽  
Yasuhide Numata ◽  
Akihito Wachi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document