A western North Pacific tropical cyclone intensity prediction scheme

2011 ◽  
Vol 25 (5) ◽  
pp. 611-624 ◽  
Author(s):  
Peiyan Chen ◽  
Hui Yu ◽  
Johnny C. L. Chan
2006 ◽  
Vol 21 (4) ◽  
pp. 613-635 ◽  
Author(s):  
Thomas A. Jones ◽  
Daniel Cecil ◽  
Mark DeMaria

Abstract The formulation and testing of an enhanced Statistical Hurricane Intensity Prediction Scheme (SHIPS) using new predictors derived from passive microwave imagery is presented. Passive microwave imagery is acquired for tropical cyclones in the Atlantic and eastern North Pacific basins between 1995 and 2003. Predictors relating to the inner-core (within 100 km of center) precipitation and convective characteristics of tropical cyclones are derived. These predictors are combined with the climatological and environmental predictors used by SHIPS in a simple linear regression model with change in tropical cyclone intensity as the predictand. Separate linear regression models are produced for forecast intervals of 12, 24, 36, 48, 60, and 72 h from the time of a microwave sensor overpass. Analysis of the resulting models indicates that microwave predictors, which provide an intensification signal to the model when above-average precipitation and convective signatures are present, have comparable importance to vertical wind shear and SST-related predictors. The addition of the microwave predictors produces a 2%–8% improvement in performance for the Atlantic and eastern North Pacific tropical cyclone intensity forecasts out to 72 h when compared with an environmental-only model trained from the same sample. Improvement is also observed when compared against the current version of SHIPS. The improvement in both basins is greatest for substantially intensifying or weakening tropical cyclones. Improvement statistics are based on calculating the forecast error for each tropical cyclone while it is held out of the training sample to approximate the use of independent data.


SOLA ◽  
2018 ◽  
Vol 14 (0) ◽  
pp. 138-143 ◽  
Author(s):  
Munehiko Yamaguchi ◽  
Hiromi Owada ◽  
Udai Shimada ◽  
Masahiro Sawada ◽  
Takeshi Iriguchi ◽  
...  

2019 ◽  
Vol 46 (15) ◽  
pp. 9145-9153 ◽  
Author(s):  
Xin Zhou ◽  
Zhonghui Liu ◽  
Qing Yan ◽  
Xiaolin Zhang ◽  
Liang Yi ◽  
...  

2019 ◽  
Vol 46 (15) ◽  
pp. 8960-8968 ◽  
Author(s):  
Woojeong Lee ◽  
Sung‐Hun Kim ◽  
Pao‐Shin Chu ◽  
Il‐Ju Moon ◽  
Alexander V. Soloviev

2018 ◽  
Vol 31 (3) ◽  
pp. 1015-1028 ◽  
Author(s):  
Jia Liang ◽  
Liguang Wu ◽  
Guojun Gu

Abstract As one major source of forecasting errors in tropical cyclone intensity, rapid weakening of tropical cyclones [an intensity reduction of 20 kt (1 kt = 0.51 m s−1) or more over a 24-h period] over the tropical open ocean can result from the interaction between tropical cyclones and monsoon gyres. This study aims to examine rapid weakening events occurring in monsoon gyres in the tropical western North Pacific (WNP) basin during May–October 2000–14. Although less than one-third of rapid weakening events happened in the tropical WNP basin south of 25°N, more than 40% of them were associated with monsoon gyres. About 85% of rapid weakening events in monsoon gyres occurred in September and October. The rapid weakening events associated with monsoon gyres are usually observed near the center of monsoon gyres when tropical cyclone tracks make a sudden northward turn. The gyres can enlarge the outer size of tropical cyclones and tend to induce prolonged rapid weakening events with an average duration of 33.2 h. Large-scale environmental factors, including sea surface temperature changes, vertical wind shear, and midlevel environmental humidity, are not primary contributors to them, suggesting the possible effect of monsoon gyres on these rapid weakening events by modulating the tropical cyclone structure. This conclusion is conducive to improving operational forecasts of tropical cyclone intensity.


Sign in / Sign up

Export Citation Format

Share Document