scholarly journals Passive-Microwave-Enhanced Statistical Hurricane Intensity Prediction Scheme

2006 ◽  
Vol 21 (4) ◽  
pp. 613-635 ◽  
Author(s):  
Thomas A. Jones ◽  
Daniel Cecil ◽  
Mark DeMaria

Abstract The formulation and testing of an enhanced Statistical Hurricane Intensity Prediction Scheme (SHIPS) using new predictors derived from passive microwave imagery is presented. Passive microwave imagery is acquired for tropical cyclones in the Atlantic and eastern North Pacific basins between 1995 and 2003. Predictors relating to the inner-core (within 100 km of center) precipitation and convective characteristics of tropical cyclones are derived. These predictors are combined with the climatological and environmental predictors used by SHIPS in a simple linear regression model with change in tropical cyclone intensity as the predictand. Separate linear regression models are produced for forecast intervals of 12, 24, 36, 48, 60, and 72 h from the time of a microwave sensor overpass. Analysis of the resulting models indicates that microwave predictors, which provide an intensification signal to the model when above-average precipitation and convective signatures are present, have comparable importance to vertical wind shear and SST-related predictors. The addition of the microwave predictors produces a 2%–8% improvement in performance for the Atlantic and eastern North Pacific tropical cyclone intensity forecasts out to 72 h when compared with an environmental-only model trained from the same sample. Improvement is also observed when compared against the current version of SHIPS. The improvement in both basins is greatest for substantially intensifying or weakening tropical cyclones. Improvement statistics are based on calculating the forecast error for each tropical cyclone while it is held out of the training sample to approximate the use of independent data.

2018 ◽  
Vol 31 (3) ◽  
pp. 1015-1028 ◽  
Author(s):  
Jia Liang ◽  
Liguang Wu ◽  
Guojun Gu

Abstract As one major source of forecasting errors in tropical cyclone intensity, rapid weakening of tropical cyclones [an intensity reduction of 20 kt (1 kt = 0.51 m s−1) or more over a 24-h period] over the tropical open ocean can result from the interaction between tropical cyclones and monsoon gyres. This study aims to examine rapid weakening events occurring in monsoon gyres in the tropical western North Pacific (WNP) basin during May–October 2000–14. Although less than one-third of rapid weakening events happened in the tropical WNP basin south of 25°N, more than 40% of them were associated with monsoon gyres. About 85% of rapid weakening events in monsoon gyres occurred in September and October. The rapid weakening events associated with monsoon gyres are usually observed near the center of monsoon gyres when tropical cyclone tracks make a sudden northward turn. The gyres can enlarge the outer size of tropical cyclones and tend to induce prolonged rapid weakening events with an average duration of 33.2 h. Large-scale environmental factors, including sea surface temperature changes, vertical wind shear, and midlevel environmental humidity, are not primary contributors to them, suggesting the possible effect of monsoon gyres on these rapid weakening events by modulating the tropical cyclone structure. This conclusion is conducive to improving operational forecasts of tropical cyclone intensity.


2005 ◽  
Vol 18 (15) ◽  
pp. 2996-3006 ◽  
Author(s):  
Suzana J. Camargo ◽  
Adam H. Sobel

Abstract The influence of the El Niño–Southern Oscillation (ENSO) on tropical cyclone intensity in the western North Pacific basin is examined. Accumulated cyclone energy (ACE), constructed from the best-track dataset for the region for the period 1950–2002, and other related variables are analyzed. ACE is positively correlated with ENSO indices. This and other statistics of the interannually varying tropical cyclone distribution are used to show that there is a tendency in El Niño years toward tropical cyclones that are both more intense and longer-lived than in La Niña years. ACE leads ENSO indices: during the peak season (northern summer and fall), ACE is correlated approximately as strongly with ENSO indices up to six months later (northern winter), as well as simultaneously. It appears that not all of this lead–lag relationship is easily explained by the autocorrelation of the ENSO indices, though much of it is. Interannual variations in the annual mean lifetime, intensity, and number of tropical cyclones all contribute to the ENSO signal in ACE, though the lifetime effect appears to be the most important of the three.


SOLA ◽  
2018 ◽  
Vol 14 (0) ◽  
pp. 138-143 ◽  
Author(s):  
Munehiko Yamaguchi ◽  
Hiromi Owada ◽  
Udai Shimada ◽  
Masahiro Sawada ◽  
Takeshi Iriguchi ◽  
...  

2015 ◽  
Vol 143 (11) ◽  
pp. 4476-4492 ◽  
Author(s):  
George R. Alvey III ◽  
Jonathan Zawislak ◽  
Edward Zipser

Abstract Using a 15-yr (1998–2012) multiplatform dataset of passive microwave satellite data [tropical cyclone–passive microwave (TC-PMW)] for Atlantic and east Pacific storms, this study examines the relative importance of various precipitation properties, specifically convective intensity, symmetry, and area, to the spectrum of intensity changes observed in tropical cyclones. Analyses are presented not only spatially in shear-relative quadrants around the center, but also every 6 h during a 42-h period encompassing 18 h prior to onset of intensification to 24 h after. Compared to those with slower intensification rates, storms with higher intensification rates (including rapid intensification) have more symmetric distributions of precipitation prior to onset of intensification, as well as a greater overall areal coverage of precipitation. The rate of symmetrization prior to, and during, intensification increases with increasing intensity change as rapidly intensifying storms are more symmetric than slowly intensifying storms. While results also clearly show important contributions from strong convection, it is concluded that intensification is more closely related to the evolution of the areal, radial, and symmetric distribution of precipitation that is not necessarily intense.


2016 ◽  
Vol 31 (5) ◽  
pp. 1643-1654 ◽  
Author(s):  
Chang-Jiang Zhang ◽  
Jin-Fang Qian ◽  
Lei-Ming Ma ◽  
Xiao-Qin Lu

Abstract An objective technique is presented to estimate tropical cyclone intensity using the relevance vector machine (RVM) and deviation angle distribution inhomogeneity (DADI) based on infrared satellite images of the northwest Pacific Ocean basin from China’s FY-2C geostationary satellite. Using this technique, structures of a deviation-angle gradient co-occurrence matrix, which include 15 statistical parameters nonlinearly related to tropical cyclone intensity, were derived from infrared satellite imagery. RVM was then used to relate these statistical parameters to tropical cyclone intensity. Twenty-two tropical cyclones occurred in the northwest Pacific during 2005–09 and were selected to verify the performance of the proposed technique. The results show that, in comparison with the traditional linear regression method, the proposed technique can significantly improve the accuracy of tropical cyclone intensity estimation. The average absolute error of intensity estimation using the linear regression method is between 15 and 29 m s−1. Compared to the linear regression method, the average absolute error of the intensity estimation using RVM is between 3 and 10 m s−1.


2019 ◽  
Vol 46 (15) ◽  
pp. 9145-9153 ◽  
Author(s):  
Xin Zhou ◽  
Zhonghui Liu ◽  
Qing Yan ◽  
Xiaolin Zhang ◽  
Liang Yi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document