21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis

2015 ◽  
Vol 26 (9) ◽  
pp. 1626-1632 ◽  
Author(s):  
Christopher L. Hendrickson ◽  
John P. Quinn ◽  
Nathan K. Kaiser ◽  
Donald F. Smith ◽  
Greg T. Blakney ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Simone Nicolardi ◽  
Hans Dalebout ◽  
Marco R. Bladergroen ◽  
Wilma E. Mesker ◽  
Rob A. E. M. Tollenaar ◽  
...  

The continuous efforts to find new prognostic or diagnostic biomarkers have stimulated the use of mass spectrometry (MS) profiles in a clinical setting. In the early days (about one decade ago), a single low-resolution mass spectrum derived from an individual’s body fluid was used for comparative studies. However, a peptide profile of a complex mixture is most informative when recorded on an ultrahigh resolution instrument such as a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. In this study we show the benefits of the ultrahigh resolving power and the high mass accuracy and precision provided by an FTICR mass spectrometer equipped with a 15-tesla magnet. The ultrahigh-resolution data not only allow assignment of fragment ions with high charge states (4+, 5+) but also enhance confidence of human serum peptide identifications from tandem MS experiments. This is exemplified with collision-induced dissociation (CID) and electron transfer dissociation (ETD) data of middle-down-sized endogenous or protein-breakdown peptides that are of interest in biomarker discovery studies.


1993 ◽  
Vol 64 (7) ◽  
pp. 1845-1852 ◽  
Author(s):  
George M. Alber ◽  
Alan G. Marshall ◽  
Nicholas C. Hill ◽  
Lutz Schweikhard ◽  
Tom L. Ricca

Sign in / Sign up

Export Citation Format

Share Document