scholarly journals Deep Transfer Learning Based Unified Framework for COVID19 Classification and Infection Detection from Chest X-Ray Images

Author(s):  
Sankar Ganesh Sundaram ◽  
Saleh Abdullah Aloyuni ◽  
Raed Abdullah Alharbi ◽  
Tariq Alqahtani ◽  
Mohamed Yacin Sikkandar ◽  
...  
2021 ◽  
Vol 144 ◽  
pp. 110713
Author(s):  
Ayan Kumar Das ◽  
Sidra Kalam ◽  
Chiranjeev Kumar ◽  
Ditipriya Sinha

2021 ◽  
Vol 29 (1) ◽  
pp. 19-36
Author(s):  
Çağín Polat ◽  
Onur Karaman ◽  
Ceren Karaman ◽  
Güney Korkmaz ◽  
Mehmet Can Balcı ◽  
...  

BACKGROUND: Chest X-ray imaging has been proved as a powerful diagnostic method to detect and diagnose COVID-19 cases due to its easy accessibility, lower cost and rapid imaging time. OBJECTIVE: This study aims to improve efficacy of screening COVID-19 infected patients using chest X-ray images with the help of a developed deep convolutional neural network model (CNN) entitled nCoV-NET. METHODS: To train and to evaluate the performance of the developed model, three datasets were collected from resources of “ChestX-ray14”, “COVID-19 image data collection”, and “Chest X-ray collection from Indiana University,” respectively. Overall, 299 COVID-19 pneumonia cases and 1,522 non-COVID 19 cases are involved in this study. To overcome the probable bias due to the unbalanced cases in two classes of the datasets, ResNet, DenseNet, and VGG architectures were re-trained in the fine-tuning stage of the process to distinguish COVID-19 classes using a transfer learning method. Lastly, the optimized final nCoV-NET model was applied to the testing dataset to verify the performance of the proposed model. RESULTS: Although the performance parameters of all re-trained architectures were determined close to each other, the final nCOV-NET model optimized by using DenseNet-161 architecture in the transfer learning stage exhibits the highest performance for classification of COVID-19 cases with the accuracy of 97.1 %. The Activation Mapping method was used to create activation maps that highlights the crucial areas of the radiograph to improve causality and intelligibility. CONCLUSION: This study demonstrated that the proposed CNN model called nCoV-NET can be utilized for reliably detecting COVID-19 cases using chest X-ray images to accelerate the triaging and save critical time for disease control as well as assisting the radiologist to validate their initial diagnosis.


2021 ◽  
pp. 115519
Author(s):  
Linh T. Duong ◽  
Nhi H. Le ◽  
Toan B. Tran ◽  
Vuong M. Ngo ◽  
Phuong T. Nguyen
Keyword(s):  
X Ray ◽  

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 434
Author(s):  
Anca Nicoleta Marginean ◽  
Delia Doris Muntean ◽  
George Adrian Muntean ◽  
Adelina Priscu ◽  
Adrian Groza ◽  
...  

It has recently been shown that the interpretation by partial differential equations (PDEs) of a class of convolutional neural networks (CNNs) supports definition of architectures such as parabolic and hyperbolic networks. These networks have provable properties regarding the stability against the perturbations of the input features. Aiming for robustness, we tackle the problem of detecting changes in chest X-ray images that may be suggestive of COVID-19 with parabolic and hyperbolic CNNs and with domain-specific transfer learning. To this end, we compile public data on patients diagnosed with COVID-19, pneumonia, and tuberculosis, along with normal chest X-ray images. The negative impact of the small number of COVID-19 images is reduced by applying transfer learning in several ways. For the parabolic and hyperbolic networks, we pretrain the networks on normal and pneumonia images and further use the obtained weights as the initializers for the networks to discriminate between COVID-19, pneumonia, tuberculosis, and normal aspects. For DenseNets, we apply transfer learning twice. First, the ImageNet pretrained weights are used to train on the CheXpert dataset, which includes 14 common radiological observations (e.g., lung opacity, cardiomegaly, fracture, support devices). Then, the weights are used to initialize the network which detects COVID-19 and the three other classes. The resulting networks are compared in terms of how well they adapt to the small number of COVID-19 images. According to our quantitative and qualitative analysis, the resulting networks are more reliable compared to those obtained by direct training on the targeted dataset.


Sign in / Sign up

Export Citation Format

Share Document