scholarly journals Reliable Learning with PDE-Based CNNs and DenseNets for Detecting COVID-19, Pneumonia, and Tuberculosis from Chest X-Ray Images

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 434
Author(s):  
Anca Nicoleta Marginean ◽  
Delia Doris Muntean ◽  
George Adrian Muntean ◽  
Adelina Priscu ◽  
Adrian Groza ◽  
...  

It has recently been shown that the interpretation by partial differential equations (PDEs) of a class of convolutional neural networks (CNNs) supports definition of architectures such as parabolic and hyperbolic networks. These networks have provable properties regarding the stability against the perturbations of the input features. Aiming for robustness, we tackle the problem of detecting changes in chest X-ray images that may be suggestive of COVID-19 with parabolic and hyperbolic CNNs and with domain-specific transfer learning. To this end, we compile public data on patients diagnosed with COVID-19, pneumonia, and tuberculosis, along with normal chest X-ray images. The negative impact of the small number of COVID-19 images is reduced by applying transfer learning in several ways. For the parabolic and hyperbolic networks, we pretrain the networks on normal and pneumonia images and further use the obtained weights as the initializers for the networks to discriminate between COVID-19, pneumonia, tuberculosis, and normal aspects. For DenseNets, we apply transfer learning twice. First, the ImageNet pretrained weights are used to train on the CheXpert dataset, which includes 14 common radiological observations (e.g., lung opacity, cardiomegaly, fracture, support devices). Then, the weights are used to initialize the network which detects COVID-19 and the three other classes. The resulting networks are compared in terms of how well they adapt to the small number of COVID-19 images. According to our quantitative and qualitative analysis, the resulting networks are more reliable compared to those obtained by direct training on the targeted dataset.

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5813
Author(s):  
Muhammad Umair ◽  
Muhammad Shahbaz Khan ◽  
Fawad Ahmed ◽  
Fatmah Baothman ◽  
Fehaid Alqahtani ◽  
...  

The COVID-19 outbreak began in December 2019 and has dreadfully affected our lives since then. More than three million lives have been engulfed by this newest member of the corona virus family. With the emergence of continuously mutating variants of this virus, it is still indispensable to successfully diagnose the virus at early stages. Although the primary technique for the diagnosis is the PCR test, the non-contact methods utilizing the chest radiographs and CT scans are always preferred. Artificial intelligence, in this regard, plays an essential role in the early and accurate detection of COVID-19 using pulmonary images. In this research, a transfer learning technique with fine tuning was utilized for the detection and classification of COVID-19. Four pre-trained models i.e., VGG16, DenseNet-121, ResNet-50, and MobileNet were used. The aforementioned deep neural networks were trained using the dataset (available on Kaggle) of 7232 (COVID-19 and normal) chest X-ray images. An indigenous dataset of 450 chest X-ray images of Pakistani patients was collected and used for testing and prediction purposes. Various important parameters, e.g., recall, specificity, F1-score, precision, loss graphs, and confusion matrices were calculated to validate the accuracy of the models. The achieved accuracies of VGG16, ResNet-50, DenseNet-121, and MobileNet are 83.27%, 92.48%, 96.49%, and 96.48%, respectively. In order to display feature maps that depict the decomposition process of an input image into various filters, a visualization of the intermediate activations is performed. Finally, the Grad-CAM technique was applied to create class-specific heatmap images in order to highlight the features extracted in the X-ray images. Various optimizers were used for error minimization purposes. DenseNet-121 outperformed the other three models in terms of both accuracy and prediction.


Author(s):  
Saleh Albahli ◽  
Waleed Albattah

Objective: Automatic prediction of COVID-19 using deep convolution neural networks based pre-trained transfer models and Chest X-ray images. Method: This research employs the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of the disease. Using Deep Learning models, the research aims at evaluating the effectiveness and accuracy of different convolutional neural networks models in the automatic diagnosis of COVID-19 from X-ray images as compared to diagnosis performed by experts in the medical community. Result: Due to the fact that the dataset available for COVID-19 is still limited, the best model to use is the InceptionNetV3. Performance results show that the InceptionNetV3 model yielded the highest accuracy of 98.63% (with data augmentation) and 98.90% (without data augmentation) among the three models designed. However, as the dataset gets bigger, the Inception ResNetV2 and NASNetlarge will do a better job of classification. All the performed networks tend to over-fit when data augmentation is not used, this is due to the small amount of data used for training and validation. Conclusion: A deep transfer learning is proposed to detecting the COVID-19 automatically from chest X-ray by training it with X-ray images gotten from both COVID-19 patients and people with normal chest Xrays. The study is aimed at helping doctors in making decisions in their clinical practice due its high performance and effectiveness, the study also gives an insight to how transfer learning was used to automatically detect the COVID-19.


Author(s):  
Sohaib Asif ◽  
Yi Wenhui ◽  
Hou Jin ◽  
Yi Tao ◽  
Si Jinhai

AbstractThe COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A vital step in the combat towards COVID-19 is a successful screening of contaminated patients, with one of the key screening approaches being radiological imaging using chest radiography. This study aimed to automatically detect COVID‐ 19 pneumonia patients using digital chest x‐ ray images while maximizing the accuracy in detection using deep convolutional neural networks (DCNN). The dataset consists of 864 COVID‐ 19, 1345 viral pneumonia and 1341 normal chest x‐ ray images. In this study, DCNN based model Inception V3 with transfer learning have been proposed for the detection of coronavirus pneumonia infected patients using chest X-ray radiographs and gives a classification accuracy of more than 98% (training accuracy of 97% and validation accuracy of 93%). The results demonstrate that transfer learning proved to be effective, showed robust performance and easily deployable approach for COVID-19 detection.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Rahib H. Abiyev ◽  
Abdullahi Ismail

This paper proposes a Convolutional Neural Networks (CNN) based model for the diagnosis of COVID-19 and non-COVID-19 viral pneumonia diseases. These diseases affect and damage the human lungs. Early diagnosis of patients infected by the virus can help save the patient’s life and prevent the further spread of the virus. The CNN model is used to help in the early diagnosis of the virus using chest X-ray images, as it is one of the fastest and most cost-effective ways of diagnosing the disease. We proposed two convolutional neural networks (CNN) models, which were trained using two different datasets. The first model was trained for binary classification with one of the datasets that only included pneumonia cases and normal chest X-ray images. The second model made use of the knowledge learned by the first model using transfer learning and trained for 3 class classifications on COVID-19, pneumonia, and normal cases based on the second dataset that included chest X-ray (CXR) images. The effect of transfer learning on model constriction has been demonstrated. The model gave promising results in terms of accuracy, recall, precision, and F1_score with values of 98.3%, 97.9%, 98.3%, and 98.0%, respectively, on the test data. The proposed model can diagnose the presence of COVID-19 in CXR images; hence, it will help radiologists make diagnoses easily and more accurately.


2020 ◽  
Author(s):  
Shadman Sakib ◽  
Md. Abu Bakr Siddique ◽  
Mohammad Mahmudur Rahman Khan ◽  
Nowrin Yasmin ◽  
Anas Aziz ◽  
...  

AbstractWorld economy as well as public health have been facing a devastating effect caused by the disease termed as Coronavirus (COVID-19). A significant step of COVID-19 affected patient’s treatment is the faster and accurate detection of the disease which is the motivation of this study. In this paper, implementation of a deep transfer learning-based framework using a pre-trained network (ResNet-50) for detecting COVID-19 from the chest X-rays was done. Our dataset consists of 2905 chest X-ray images of three categories: COVID-19 affected (219 cases), Viral Pneumonia affected (1345 cases), and Normal Chest X-rays (1341 cases). The implemented neural network demonstrates significant performance in classifying the cases with an overall accuracy of 96%. Most importantly, the model has shown a significantly good performance over the current research-based methods in detecting the COVID-19 cases in the test dataset (Precision = 1.00, Recall = 1.00, F1-score = 1.00 and Specificity = 1.00). Therefore, our proposed approach can be adapted as a reliable method for faster and accurate COVID-19 affected case detection.


Sign in / Sign up

Export Citation Format

Share Document