Entropy solution for nonlinear elliptic problem involving variable exponent and Fourier type boundary condition

2011 ◽  
Vol 23 (2) ◽  
pp. 205-228 ◽  
Author(s):  
Ismael Nyanquini ◽  
Stanislas Ouaro
2021 ◽  
Vol 7 (1) ◽  
pp. 50-65
Author(s):  
Mustapha Ait Hammou ◽  
Elhoussine Azroul

AbstractThe aim of this paper is to establish the existence of solutions for a nonlinear elliptic problem of the form\left\{ {\matrix{{A\left( u \right) = f} \hfill & {in} \hfill & \Omega \hfill \cr {u = 0} \hfill & {on} \hfill & {\partial \Omega } \hfill \cr } } \right.where A(u) = −diva(x, u, ∇u) is a Leray-Lions operator and f ∈ W−1,p′(.)(Ω) with p(x) ∈ (1, ∞). Our technical approach is based on topological degree method and the theory of variable exponent Sobolev spaces.


2012 ◽  
Vol 03 (11) ◽  
pp. 1686-1688
Author(s):  
Ana Magnolia Marin Ramirez ◽  
Ruben Dario Ortiz Ortiz ◽  
Joel Arturo Rodriguez Ceballos

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 658 ◽  
Author(s):  
Dumitru Motreanu ◽  
Angela Sciammetta ◽  
Elisabetta Tornatore

The paper investigates a nonlinear elliptic problem with a Robin boundary condition, which exhibits a convection term with full dependence on the solution and its gradient. A sub- supersolution approach is developed for this type of problems. The main result establishes the existence of a solution enclosed in the ordered interval formed by a sub-supersolution. The result is applied to find positive solutions.


Sign in / Sign up

Export Citation Format

Share Document