scholarly journals Monotonicity properties and solvability of dominated best approximation problem in Orlicz spaces equipped with s-norms

Author(s):  
Yunan Cui ◽  
Marek Wisła

AbstractIn the paper, Wisła (J Math Anal Appl 483(2):123659, 2020, 10.1016/j.jmaa.2019.123659), it was proved that the classical Orlicz norm, Luxemburg norm and (introduced in 2009) p-Amemiya norm are, in fact, special cases of the s-norms defined by the formula $$\left\| x\right\| _{\Phi ,s}=\inf _{k>0}\frac{1}{k}s\left( \int _T \Phi (kx)d\mu \right) $$ x Φ , s = inf k > 0 1 k s ∫ T Φ ( k x ) d μ , where s and $$\Phi $$ Φ are an outer and Orlicz function respectively and x is a measurable real-valued function over a $$\sigma $$ σ -finite measure space $$(T,\Sigma ,\mu )$$ ( T , Σ , μ ) . In this paper the strict monotonicity, lower and upper uniform monotonicity and uniform monotonicity of Orlicz spaces equipped with the s-norm are studied. Criteria for these properties are given. In particular, it is proved that all of these monotonicity properties (except strict monotonicity) are equivalent, provided the outer function s is strictly increasing or the measure $$\mu $$ μ is atomless. Finally, some applications of the obtained results to the best dominated approximation problems are presented.

2019 ◽  
Vol 94 (5) ◽  
pp. 865-885
Author(s):  
Radosław Kaczmarek

Abstract Strict monotonicity, lower local uniform monotonicity, upper local uniform monotonicity and their orthogonal counterparts are considered in the case of Musielak–Orlicz function spaces $$L^\Phi (\mu )$$ L Φ ( μ ) endowed with the Mazur–Orlicz F-norm as well as in the case of their subspaces $$E^\Phi (\mu )$$ E Φ ( μ ) with the F-norm induced from $$L^\Phi (\mu )$$ L Φ ( μ ) . The presented results generalize some of the results from Cui et al. (Aequ Math 93:311–343, 2019) and Hudzik et al. (J Nonlinear Convex Anal 17(10):1985–2011, 2016), obtained only for Orlicz spaces as well as their subspaces of order continuous elements equipped with the Mazur–Orlicz F-norm.


1991 ◽  
Vol 14 (2) ◽  
pp. 245-252 ◽  
Author(s):  
H. Al-Minawi ◽  
S. Ayesh

LetXbe a real Banach space and(Ω,μ)be a finite measure space andϕbe a strictly icreasing convex continuous function on[0,∞)withϕ(0)=0. The spaceLϕ(μ,X)is the set of all measurable functionsfwith values inXsuch that∫Ωϕ(‖c−1f(t)‖)dμ(t)<∞for somec>0. One of the main results of this paper is: “For a closed subspaceYofX,Lϕ(μ,Y)is proximinal inLϕ(μ,X)if and only ifL1(μ,Y)is proximinal inL1(μ,X)′​′. As a result ifYis reflexive subspace ofX, thenLϕ(ϕ,Y)is proximinal inLϕ(μ,X). Other results on proximinality of subspaces ofLϕ(μ,X)are proved.


1995 ◽  
Vol 137 ◽  
pp. 55-75 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir ◽  
M. Weber

In this section we shall present some facts in the background of the problem under our next consideration. Let (X, A, μ) be a finite measure space, and let B be a Banach space with a norm ‖ • ‖. Let M(μ) denote the linear space of all μ-measurable functions from X into R, and let T be a linear operator from B into M (μ).


1998 ◽  
Vol 5 (2) ◽  
pp. 101-106
Author(s):  
L. Ephremidze

Abstract It is proved that for an arbitrary non-atomic finite measure space with a measure-preserving ergodic transformation there exists an integrable function f such that the ergodic Hilbert transform of any function equal in absolute values to f is non-integrable.


2021 ◽  
Vol 40 (3) ◽  
pp. 5517-5526
Author(s):  
Ömer Kişi

We investigate the concepts of pointwise and uniform I θ -convergence and type of convergence lying between mentioned convergence methods, that is, equi-ideally lacunary convergence of sequences of fuzzy valued functions and acquire several results. We give the lacunary ideal form of Egorov’s theorem for sequences of fuzzy valued measurable functions defined on a finite measure space ( X , M , μ ) . We also introduce the concept of I θ -convergence in measure for sequences of fuzzy valued functions and proved some significant results.


1973 ◽  
Vol 25 (2) ◽  
pp. 252-260 ◽  
Author(s):  
Joanne Elliott

Let F be a linear, but not necessarily closed, subspace of L2[X, dm], where (X,,m) is a σ-finite measure space with the Borel subsets of the locally compact space X. If u and v are measureable functions, then v is called a normalized contraction of u if and Assume that F is stable under normalized contractions, that is, if u ∈ F and v is a normalized contraction of u, then v ∈ F.


1967 ◽  
Vol 19 ◽  
pp. 749-756
Author(s):  
D. Sankoff ◽  
D. A. Dawson

Given a probability measure space (Ω,,P)consider the followingpacking problem.What is the maximum number,b(K,Λ), of sets which may be chosen fromso that each set has measureKand no two sets have intersection of measure larger than Λ <K?In this paper the packing problem is solved for any non-atomic probability measure space. Rather than obtaining the solution explicitly, however, it is convenient to solve the followingminimal paving problem.In a non-atomic a-finite measure space (Ω,,μ)what is the measure,V(b, K,Λ), of the smallest set which is the union of exactlybsubsets of measureKsuch that no subsets have intersection of measure larger than Λ?


1993 ◽  
Vol 45 (3) ◽  
pp. 449-469 ◽  
Author(s):  
M. A. Akcoglu ◽  
Y. Déniel

AbstractLet ℝ denote the real line. Let {Tt}tєℝ be a measure preserving ergodic flow on a non atomic finite measure space (X, ℱ, μ). A nonnegative function φ on ℝ is called a weight function if ∫ℝ φ(t)dt = 1. Consider the weighted ergodic averagesof a function f X —> ℝ, where {θk} is a sequence of weight functions. Some sufficient and some necessary and sufficient conditions are given for the a.e. convergence of Akf, in particular for a special case in whichwhere φ is a fixed weight function and {(ak, rk)} is a sequence of pairs of real numbers such that rk > 0 for all k. These conditions are obtained by a combination of the methods of Bellow-Jones-Rosenblatt, developed to deal with moving ergodic averages, and the methods of Broise-Déniel-Derriennic, developed to deal with unbounded weight functions.


1993 ◽  
Vol 36 (2) ◽  
pp. 173-177 ◽  
Author(s):  
Henryk Hudzik

AbstractW. Kurc [5] has proved that in the unit sphere of Orlicz space LΦ(μ) generated by an Orlicz function Φ satisfying the suitable Δ2-condition and equipped with the Luxemburg norm every extreme point is strongly extreme. In this paper it is proved in the case of a nonatomic measure μ that the unit sphere of the Orlicz space LΦ(μ) generated by an Orlicz function Φ which does not satisfy the suitable Δ2-condition and equipped with the Luxemburg norm has no strongly extreme point and no H-point.


Sign in / Sign up

Export Citation Format

Share Document