Are Climate Extremities Changing Forest Fire Regimes in India? An Analysis Using MODIS Fire Locations During 2003–2013 and Gridded Climate Data of India Meteorological Department

Author(s):  
Manish P. Kale ◽  
Reshma M. Ramachandran ◽  
Satish N. Pardeshi ◽  
Manoj Chavan ◽  
P. K. Joshi ◽  
...  
2017 ◽  
Vol 18 (1) ◽  
pp. 189-203 ◽  
Author(s):  
Michel Rapinski ◽  
◽  
Fanny Payette ◽  
Oliver Sonnentag ◽  
Thora Martina Herrmann ◽  
...  

2022 ◽  
Author(s):  
Janaína Cassiano dos Santos ◽  
Gustavo Bastos Lyra ◽  
Marcel Carvalho Abreu ◽  
José Francisco de Oliveira-Júnior ◽  
Leonardo Bohn ◽  
...  

2012 ◽  
Vol 38 (2) ◽  
pp. 190-198 ◽  
Author(s):  
AMANDA L. ELZER ◽  
DAVID A. PIKE ◽  
JONATHAN K. WEBB ◽  
KATE HAMMILL ◽  
ROSS A. BRADSTOCK ◽  
...  
Keyword(s):  

2020 ◽  
Vol 12 (22) ◽  
pp. 3705
Author(s):  
Ana Novo ◽  
Noelia Fariñas-Álvarez ◽  
Joaquín Martínez-Sánchez ◽  
Higinio González-Jorge ◽  
José María Fernández-Alonso ◽  
...  

The optimization of forest management in roadsides is a necessary task in terms of wildfire prevention in order to mitigate their effects. Forest fire risk assessment identifies high-risk locations, while providing a decision-making support about vegetation management for firefighting. In this study, nine relevant parameters: elevation, slope, aspect, road distance, settlement distance, fuel model types, normalized difference vegetation index (NDVI), fire weather index (FWI), and historical fire regimes, were considered as indicators of the likelihood of a forest fire occurrence. The parameters were grouped in five categories: topography, vegetation, FWI, historical fire regimes, and anthropogenic issues. This paper presents a novel approach to forest fire risk mapping the classification of vegetation in fuel model types based on the analysis of light detection and ranging (LiDAR) was incorporated. The criteria weights that lead to fire risk were computed by the analytic hierarchy process (AHP) and applied to two datasets located in NW Spain. Results show that approximately 50% of the study area A and 65% of the study area B are characterized as a 3-moderate fire risk zone. The methodology presented in this study will allow road managers to determine appropriate vegetation measures with regards to fire risk. The automation of this methodology is transferable to other regions for forest prevention planning and fire mitigation.


2012 ◽  
Vol 12 (8) ◽  
pp. 2591-2601 ◽  
Author(s):  
H. M. Mäkelä ◽  
M. Laapas ◽  
A. Venäläinen

Abstract. Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD) model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June–August), the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908–2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.


2006 ◽  
Vol 70 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Stefano Maggi ◽  
Sergio Rinaldi

2013 ◽  
Vol 294 ◽  
pp. 23-34 ◽  
Author(s):  
William J. de Groot ◽  
Alan S. Cantin ◽  
Michael D. Flannigan ◽  
Amber J. Soja ◽  
Lynn M. Gowman ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 407-418
Author(s):  
SHWETA PANJWANI ◽  
S. NARESH KUMAR ◽  
LAXMI AHUJA

Global and regional climate models are reported to have inherent bias in simulating the observed climatology of a region. This bias of climate models is the major source of uncertainties in climate change impact assessments. Therefore, use of bias corrected simulated climate data is important. In this study, the bias corrected climate data for 30 years’ period (1976-2005) from selected common fourGCMs and RCMs for six Indian locations are compared with the respective observed data of India Meteorological Department. The analysis indicated that the RCMs performance is much better than GCMs after bias correction for minimum and maximum temperatures. Also, RCMs performance is better than GCMs in simulating extreme temperatures. However, the selected RCMs and GCMs are found to either over estimate or under estimate the rainfall despite bias correction and also overestimated the rainfall extremes for selected Indian locations. Based on the overall performance of four models for the six locations, it was found that the GFDL_ESM2M and NORESM1-M RCMs performed comparatively better than CSIRO and IPSL models. After bias correction, the RCMs could represent the observed climatology better than the GCMs. And these RCMs viz., GFDL_ESM2M and NORESM1-M can be usedindividually after bias correction in the climate change assessment studies for the selected regions.


Sign in / Sign up

Export Citation Format

Share Document