The Effects of attached Discrete Patches and Point Masses on Eigen Values and Sound Radiation of a Rectangular Plate

2014 ◽  
Vol 95 (4) ◽  
pp. 359-366 ◽  
Author(s):  
B. Kumar ◽  
V. Ranjan
2013 ◽  
Vol 845 ◽  
pp. 71-75 ◽  
Author(s):  
Azma Putra ◽  
Nurain Shyafina ◽  
Noryani Muhammad ◽  
Hairul Bakri ◽  
Noor Fariza Saari

Simple analytical model of plate dynamics usually applies for rectangular plate with simply supported edges. Analytical model of sound radiation from rectangular plate is also convenient, but not for other geometries and other boundary conditions. This paper presents a hybrid mathematical model which combines a semi-analytical model with the Finite Element Analysis (FEA) method to determine sound radiation from a vibrating structure. The latter is employed to calculate the vibration velocity of a structure with a rather complex geometry. The results are then used as the input in the semi-analytical model to calculate the radiated sound pressure through the Rayleigh integral. Results from the proposed model are presented here for the radiation efficiency of rectangular plates with different boundary conditions.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Tanmoy Bose ◽  
Amiya R. Mohanty

Here, sound radiation characteristics of a rectangular plate having a side crack of different crack lengths, orientations, and positions are studied considering clamped boundary conditions. First, a free and forced vibration response analysis of a cracked plate is done using the Ritz method. Orthogonal polynomials are used for faster convergence and some corner functions are used to generate the effect of a crack. Radiated sound power and radiation efficiency of the cracked plate are computed by the quadruple integration. A convergence test of radiation efficiency is carried out to fix the number of polynomials and corner functions in the analysis. It is found that the radiation efficiency and radiated sound power computed by the Ritz method are close to the same obtained from the boundary element method (BEM). The natural frequencies computed using the Ritz method are also found to be close to that obtained from the finite element method (FEM). The radiation efficiency curves of different modes are shown for a change in crack length, orientation and position. Finally, the variations of normalized sound power are shown to be due to a change in the crack parameters.


2013 ◽  
Vol 332 (20) ◽  
pp. 4798-4816 ◽  
Author(s):  
Seyyed M. Hasheminejad ◽  
Hemad Keshavarzpour

Sign in / Sign up

Export Citation Format

Share Document