Analytical Prediction Models for Density, Thermal Conductivity and Mechanical Strength of Micro-scaled Areca Nut Powder-Reinforced Epoxy Composites

2019 ◽  
Vol 101 (1) ◽  
pp. 43-51
Author(s):  
Savita Singh ◽  
Alok Singh ◽  
Sudhir Kumar Sharma
2021 ◽  
Vol 209 ◽  
pp. 108760
Author(s):  
Yang Hu ◽  
Chao Chen ◽  
Yingfeng Wen ◽  
Zhigang Xue ◽  
Xingping Zhou ◽  
...  

Author(s):  
Zulfiqar Ali ◽  
Xiangdong Kong ◽  
Maohua Li ◽  
Xiao Hou ◽  
Linhong Li ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 980
Author(s):  
Xinfeng Wu ◽  
Yuan Gao ◽  
Tao Jiang ◽  
Lingyu Zheng ◽  
Ying Wang ◽  
...  

The heat generated by a high-power device will seriously affect the operating efficiency and service life of electronic devices, which greatly limits the development of the microelectronic industry. Carbon fiber (CF) materials with excellent thermal conductivity have been favored by scientific researchers. In this paper, CF/carbon felt (CF/C felt) was fabricated by CF and phenolic resin using the “airflow network method”, “needle-punching method” and “graphitization process method”. Then, the CF/C/Epoxy composites (CF/C/EP) were prepared by the CF/C felt and epoxy resin using the “liquid phase impregnation method” and “compression molding method”. The results show that the CF/C felt has a 3D network structure, which is very conducive to improving the thermal conductivity of the CF/C/EP composite. The thermal conductivity of the CF/C/EP composite reaches 3.39 W/mK with 31.2 wt% CF/C, which is about 17 times of that of pure epoxy.


Author(s):  
Xianzhe Wei ◽  
Guoqiang Yin ◽  
Xiangyang Zhou ◽  
Linhong Li ◽  
Maohua Li ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fu-Qing Cui ◽  
Wei Zhang ◽  
Zhi-Yun Liu ◽  
Wei Wang ◽  
Jian-bing Chen ◽  
...  

The comprehensive understanding of the variation law of soil thermal conductivity is the prerequisite of design and construction of engineering applications in permafrost regions. Compared with the unfrozen soil, the specimen preparation and experimental procedures of frozen soil thermal conductivity testing are more complex and challengeable. In this work, considering for essentially multiphase and porous structural characteristic information reflection of unfrozen soil thermal conductivity, prediction models of frozen soil thermal conductivity using nonlinear regression and Support Vector Regression (SVR) methods have been developed. Thermal conductivity of multiple types of soil samples which are sampled from the Qinghai-Tibet Engineering Corridor (QTEC) are tested by the transient plane source (TPS) method. Correlations of thermal conductivity between unfrozen and frozen soil has been analyzed and recognized. Based on the measurement data of unfrozen soil thermal conductivity, the prediction models of frozen soil thermal conductivity for 7 typical soils in the QTEC are proposed. To further facilitate engineering applications, the prediction models of two soil categories (coarse and fine-grained soil) have also been proposed. The results demonstrate that, compared with nonideal prediction accuracy of using water content and dry density as the fitting parameter, the ternary fitting model has a higher thermal conductivity prediction accuracy for 7 types of frozen soils (more than 98% of the soil specimens’ relative error are within 20%). The SVR model can further improve the frozen soil thermal conductivity prediction accuracy and more than 98% of the soil specimens’ relative error are within 15%. For coarse and fine-grained soil categories, the above two models still have reliable prediction accuracy and determine coefficient (R2) ranges from 0.8 to 0.91, which validates the applicability for small sample soils. This study provides feasible prediction models for frozen soil thermal conductivity and guidelines of the thermal design and freeze-thaw damage prevention for engineering structures in cold regions.


Sign in / Sign up

Export Citation Format

Share Document