mechanical strength
Recently Published Documents





2022 ◽  
Renyun Zhang ◽  
Jonas Ortegren ◽  
Magnus Hummelgard ◽  
Martin Olsen ◽  
Henrik A Andersson ◽  

Abstract Material development is essential when studying triboelectric nanogenerators (TENGs). This importance is because the performance of TENGs are highly dependent on the properties of the utilized triboelectric materials. To obtain more specific properties, composites have been developed that combine the features of their components. According to Google Scholar, 55% of published papers related to triboelectric nanogenerators have utilized or mentioned composites. This number is 34.5% if one searches with the keyword nanocomposites instead of composites. The importance of composites is because they can exhibit new dielectric properties, better mechanical strength, enhanced charge affinities, etc. Therefore, the development of new composites has great importance in TENG studies. In this paper, we review the production of nanocomposites, the types of nanocomposites, and their application in TENG studies. This review gives an overview of how nanocomposites boost the performance of TENGs and provides guidance for future studies.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Chia-Hung Hung ◽  
Tunay Turk ◽  
M. Hossein Sehhat ◽  
Ming C. Leu

Purpose This paper aims to present the development and experimental study of a fully automated system using a novel laser additive manufacturing technology called laser foil printing (LFP), to fabricate metal parts layer by layer. The mechanical properties of parts fabricated with this novel system are compared with those of comparable methodologies to emphasize the suitability of this process. Design/methodology/approach Test specimens and parts with different geometries were fabricated from 304L stainless steel foil using an automated LFP system. The dimensions of the fabricated parts were measured, and the mechanical properties of the test specimens were characterized in terms of mechanical strength and elongation. Findings The properties of parts fabricated with the automated LFP system were compared with those of parts fabricated with the powder bed fusion additive manufacturing methods. The mechanical strength is higher than those of parts fabricated by the laser powder bed fusion and directed energy deposition technologies. Originality/value To the best knowledge of authors, this is the first time a fully automated LFP system has been developed and the properties of its fabricated parts were compared with other additive manufacturing methods for evaluation.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 421
Salome Hagelstein ◽  
Sergej Zankovic ◽  
Adalbert Kovacs ◽  
Roland Barkhoff ◽  
Michael Seidenstuecker

Zinc alloys have recently been researched intensely for their great properties as bioabsorbable implants for osteosynthesis. Pure zinc (Zn) itself has relatively poor strength, which makes it insufficient for most clinical use. Research has already proven that the mechanical strength of zinc can be enhanced significantly by alloying it with silver. This study evaluated zinc silver alloys (ZnAg) as well as novel zinc silver titanium alloys (ZnAgTi) regarding their mechanical properties for the use as bioabsorbable implants. Compared to pure zinc the mechanical strength was enhanced significantly for all tested zinc alloys. The elastic properties were only enhanced significantly for the zinc silver alloys ZnAg6 and ZnAg9. Regarding target values for orthopedic implants proposed in literature, the best mechanical properties were measured for the ZnAg3Ti1 alloy with an ultimate tensile strength of 262 MPa and an elongation at fracture of 16%. Besides the mechanical properties, the corrosion rates are important for bioabsorbable implants. This study tested the corrosion rates of zinc alloys in PBS solution (phosphate buffered solution) with electrochemical corrosion measurement. Zinc and its alloys showed favorable corrosion rates, especially in comparison to magnesium, which has a much lower degradation rate and no buildup of hydrogen gas pockets during the process. Altogether, this makes zinc alloys highly favorable for use as material for bioabsorbable implants for osteosynthesis.

Sergio Pons Ribera ◽  
Rabah Hamzaoui ◽  
Johan Colin ◽  
Benitha Vasseur ◽  
Laetitia Bessette ◽  

This work, which is part of the FIBRABETON project, aims to anti-fissuration screed formulations proposition based on natural fibers and comparing these formulations to a synthetic fiber-screed formulation. Different natural fiber (hemp, flax, miscanthus and bamboo) with contents rangingfrom 0.4% to 0.8% were tested. The spread (slump), the shrinkage and mechanical strength (flexural and compressive) studies were carried out. SEM images of natural fibers and natural fibers screed formulation were analyzed. Overall, it is found that all natural fibers screed formulations tested, have shown better behaviour than the synthetic fibers screed formulation in point of view workability, shrinkage and mechanical properties. The lowest shrinkage value is found in the case of the H5 (5 mm long hemp fibers) screed formulation. Generally speaking, the mechanical strength values (flexural and compressive) are more or less similar between natural soft fibers (hemp and flax) and rigid fibers (miscanthus and bamboo). Taking in account slump, shrinkage and mechanical behavior, the proposed good compromise in this work is the H5 screed formulation.

Julia Tourtelot ◽  
Chloé Fourdrin ◽  
Jean Baptiste d'Espinose de Lacaillerie ◽  
Ann Bourgès ◽  
Emmanuel Keita

The restoration, the protection, or the creation of earthen buildings require improving the mechanical strength of the material. The first way to do that is to use inorganic additives, but these additives change the structural properties of earth and have a high carbon footprint. In contrast, the other way to consolidate is the use of organic additives such as vegetal derivatives that rearrange the minerals in the earth, with the lowest carbon footprint as they are from waste management. After preliminary tests with ten different organic additives from traditional recipes, we found that wheat starch improves the earth strength up to 50 %. In this study, we related the mechanical strengthening to the physicochemical interactions between clays and starch. We focus on three clays that represent the three main groups of clays: kaolinite, illite and montmorillonite. For this study, we mainly focused on compressive test and rheological tests. We showed that the improvement of the mechanical strength with starch is depending on clay nature and their chemistry. Then, we can recommend formulations based on the earth nature for new sustainable buildings. Furthermore, we can understand why it was an interesting way to use starch as a strengthening agent in traditional recipes and how it could be used to repair and protect buildings made of earthen material.

Sign in / Sign up

Export Citation Format

Share Document