scholarly journals Lagrange-multiplier regularization of eigenproblem for Jx

Author(s):  
Dong-Won Jung ◽  
U-Rae Kim ◽  
Jungil Lee ◽  
Chaehyun Yu ◽  

AbstractWe solve the eigenproblem of the angular momentum $$J_x$$ J x by directly dealing with the non-diagonal matrix unlike the conventional approach rotating the trivial eigenstates of $$J_z$$ J z . Characteristic matrix is reduced into a tri-diagonal form following Narducci–Orszag rescaling of the eigenvectors. A systematic reduction formalism with recurrence relations for determinants of any dimension greatly simplifies the computation of tri-diagonal matrices. Thus the secular determinant is intrinsically factorized to find the eigenvalues immediately. The reduction formalism is employed to find the adjugate of the characteristic matrix. Improving the recently introduced Lagrange-multiplier regularization, we identify that every column of that adjugate matrix is indeed the eigenvector. It is remarkable that the approach presented in this work is completely new and unique in that any information of $$J_z$$ J z is not required and only algebraic operations are involved. Collapsing of the large amount of determinant calculation with the recurrence relation has a wide variety of applications to other tri-diagonal matrices appearing in various fields. This new formalism should be pedagogically useful for treating the angular momentum problem that is central to quantum mechanics course.

Author(s):  
Chaehyun Yu ◽  
Dong-Won Jung ◽  
U-Rae Kim ◽  
Jungil Lee

AbstractWe derive the formulas for the energy and wavefunction of the time-independent Schrödinger equation with perturbation in a compact form. Unlike the conventional approaches based on Rayleigh–Schrödinger or Brillouin–Wigner perturbation theories, we employ a recently developed approach of matrix-valued Lagrange multipliers that regularizes an eigenproblem. The Lagrange-multiplier regularization makes the characteristic matrix for an eigenproblem invertible. After applying the constraint equation to recover the original equation, we find the solutions of the energy and wavefunction consistent with the conventional approaches. This formalism does not rely on an iterative way and the order-by-order corrections are easily obtained by taking the Taylor expansion. The Lagrange-multiplier regularization formalism for perturbation theory presented in this paper is completely new and can be extended to the degenerate perturbation theory in a straightforward manner. We expect that this new formalism is also pedagogically useful to give insights on the perturbation theory in quantum mechanics.


2006 ◽  
Vol 21 (27) ◽  
pp. 2079-2085 ◽  
Author(s):  
HONG-YI FAN

By introducing the bosonic operator realization of angular momentum, we establish the entangled state representation for describing quantum mechanics of a particle on a circle. The phase operator, the angular momentum eigenstates, the lowering and ascending operators for angular momentum are all well expressed in the bosonic realization with the aid of appropriate entangled states, i.e. we establish a new formalism for the quantum mechanics of a particle on a circle.


Author(s):  
N. C. Pyper

The periodic table provides a deep unifying principle for understanding chemical behaviour by relating the properties of different elements. For those belonging to the fifth and earlier rows, the observations concerning these properties and their interrelationships acquired a sound theoretical basis by the understanding of electronic behaviour provided by non-relativistic quantum mechanics. However, for elements of high nuclear charge, such as occur in the sixth and higher rows of the periodic table, the systematic behaviour explained by non-relativistic quantum mechanics begins to fail. These problems are resolved by realizing that relativistic quantum mechanics is required in heavy elements where electrons velocities can reach significant fractions of the velocity of light. An essentially non-mathematical description of relativistic quantum mechanics explains how relativity modifies valence electron behaviour in heavy elements. The direct relativistic effect, arising from the relativistic increase of the electron mass with velocity, contracts orbitals of low angular momentum, increasing their binding energies. The indirect relativistic effect causes valence orbitals of high angular momentum to be more effectively screened as a result of the relativistic contraction of the core orbitals. In the alkali and alkaline earths, the s orbital contractions reverse the chemical trends on descending these groups, with heavy elements becoming less reactive. For valence d and f electrons, the indirect relativistic effect enhances the reductions in their binding energies on descending the periodic table. The d electrons in the heavier coinage metals thus become more chemically active, which causes these elements to exhibit higher oxidation states. The indirect effect on d orbitals causes the chemistries of the sixth-row transition elements to differ significantly from the very similar behaviours of the fourth and fifth-row transition series. The relativistic destabilization of f orbitals causes lanthanides to be chemically similar, forming mainly ionic compounds in oxidation state three, while allowing the earlier actinides to show a richer range of chemical behaviour with several higher oxidation states. For the 7p series of elements, relativity divides the non-relativistic p shell of three degenerate orbitals into one of much lower energy with the energies of the remaining two being substantially increased. These orbitals have angular shapes and spin distributions so different from those of the non-relativistic ones that the ability of the 7p elements to form covalent bonds is greatly inhibited. This article is part of the theme issue ‘Mendeleev and the periodic table’.


Sign in / Sign up

Export Citation Format

Share Document