scholarly journals Innovative solution to enhance the Helmholtz resonator sound absorber in low-frequency noise by nature inspiration

2020 ◽  
Vol 18 (2) ◽  
pp. 873-882
Author(s):  
Sedigheh Basirjafari
2013 ◽  
Vol 468 ◽  
pp. 134-140 ◽  
Author(s):  
Xia Zhang ◽  
Shu Ning Duan ◽  
Mei Gen Cao ◽  
Juan Mo ◽  
Yu Han Sun ◽  
...  

In allusion to the characteristic that transformer noise is mainly low-frequency noise, firstly the sound absorber is studied and analyzed on aspect of materials, sound absorption structure cavity thickness and punching rate etc in standing wave tube laboratory, secondly transformer substation low-frequency sound absorber is presented, and finally sound absorption properties of absorber is verified through random incidence Test. The analyses and study indicates that: compared with thin plate resonance absorber and micropunching sound absorber, the sound absorption band width of transformer substation low-frequency sound absorber has been improved under unchanged sound absorption effect and transformer low-frequency noise may be effectively absorbed.


2021 ◽  
Vol 11 (18) ◽  
pp. 8678
Author(s):  
Byunghui Kim ◽  
Seokho Kim ◽  
Yejin Park ◽  
Marinus Mieremet ◽  
Heungguen Yang ◽  
...  

With the rapid increase in automobiles, the importance of reducing low-frequency noise is being emphasized for a comfortable urban environment. Helmholtz resonators are widely used to attenuate low-frequency noise over a narrow range. In this study, a slit-type soundproof panel is designed to achieve low-frequency noise attenuation in the range of 500 Hz to 1000 Hz with the characteristics of a Helmholtz resonator and the ability to pass air through the slits on the panel surface for reducing wind load. The basic dimension of the soundproof panel is determined using the classical formula and numerical analysis using a commercial program, COMSOL Multiphysics, for transmission loss prediction. From the numerical study, it is identified that the transmission loss performance is improved compared to the basic design according to the shape change and configuration method of the Helmholtz resonator. Although the correlation according to the shape change and configuration method cannot be derived, it is confirmed that it can be used as an effective method for deriving a soundproof panel design that satisfies the basic performance.


2021 ◽  
Vol 69 (4) ◽  
pp. 351-363
Author(s):  
Jhalu Gorain ◽  
Chandramouli Padmanabhan

Achieving broadband noise attenuation at low frequencies is still a significant challenge. Helmholtz resonators offer good low-frequency noise attenuation but are effective only over a narrow band; the cavity volume required at these frequencies is also larger. This article proposes a new broadband acoustic metamaterial (AMM) absorber, which uses polyurethane (PU) foam embedded with small-size resonators tuned to different frequencies. The AMM design is achieved in three phases: (1) develop a transfer-matrix-based one-dimensionalmodel for a resonator with intruded neck; (2) use this model to develop a novel band broadeningmethod, to select appropriate resonators tuned to different frequencies; and (3) construct a unit cell metamaterial embedded with an array of resonators into PU foam. A small-size resonator tuned to 415 Hz is modified, by varying the intrusion lengths of the neck, to achieve natural frequencies ranging from 210 to 415 Hz. Using the band broadening methodology, 1 unit cell metamaterial is constructed; its effectiveness is demonstrated by testing in an acoustic impedance tube. The broadband attenuation characteristics of the constructed unit cell metamaterial are shown to match well with the predicted results. To demonstrate further the effectiveness of the idea, a metamaterial is formed using 4 periodic unit cells and is tested in a twin room reverberation chamber. The transmission loss is shown to improve significantly, at low frequencies, due to the inclusion of the resonators.


2021 ◽  
Vol 263 (2) ◽  
pp. 3975-3986
Author(s):  
Tenon Charly Kone ◽  
Sebastian Ghinet ◽  
Raymond Panneton ◽  
Thomas Dupont ◽  
Anant Grewal

The noise control at multiple tonal frequencies simultaneously, in the low frequency range, is a challenge for aerospace, ground transportation and building industries. In the past few decades, various low frequency noise control solutions based on acoustic metamaterial designs have been presented in the literature. These solutions showed promising performance and are considered a better alternative to conventional sound insulation materials. In the present investigation, it was noticed that subdividing the cavity of a Helmholtz resonator allowed the control of multi-tonal noise at several resonance frequencies simultaneously and a shift of the resonance peaks towards the low frequencies. This paper proposes concepts of Helmholtz resonators with subdivided cavities to improve the sound transmission loss (STL) performance and simultaneously control the noise at several tonal frequencies. HRs with cylindrical shaped cavities were embedded in a layer of porous material. The STL of the metamaterial noise insulation configuration was predicted using serial and parallel assemblies of transfer matrices (TMM) incorporating a thermo-viscous-acoustic approach to accurately account for the viscous and thermal losses of acoustic wave propagation within the metamaterial. The STL calculated using the proposed TMM approach were observed to be in excellent agreement with the finite element method (FEM) numerical results.


Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 120-127
Author(s):  
Mikhail D. Vorobyev ◽  
◽  
Dmitriy N. Yudaev ◽  
Andrey Yu. Zorin ◽  
◽  
...  

1999 ◽  
Author(s):  
Charles K. Birdsall ◽  
J. P. Varboncoeur ◽  
P. J. Christensen

Sign in / Sign up

Export Citation Format

Share Document