scholarly journals Population Pharmacokinetics of Dexmedetomidine in Critically Ill Patients

2013 ◽  
Vol 33 (8) ◽  
pp. 579-587 ◽  
Author(s):  
Pyry Antti Välitalo ◽  
Tuula Ahtola-Sätilä ◽  
Andrew Wighton ◽  
Toni Sarapohja ◽  
Pasi Pohjanjousi ◽  
...  
2013 ◽  
Vol 57 (4) ◽  
pp. 524-531 ◽  
Author(s):  
Ana M. Sandri ◽  
Cornelia B. Landersdorfer ◽  
Jovan Jacob ◽  
Márcio M. Boniatti ◽  
Micheline G. Dalarosa ◽  
...  

2020 ◽  
Vol 72 (12) ◽  
pp. 1750-1760
Author(s):  
Iasonas Kapralos ◽  
Efstratios Mainas ◽  
Efthymios Neroutsos ◽  
Stella Apostolidi ◽  
Maria Siopi ◽  
...  

2019 ◽  
Vol 54 (3) ◽  
pp. 380
Author(s):  
Sofie A.M. Dhaese ◽  
Jason A. Roberts ◽  
Mieke Carlier ◽  
Alain G. Verstraete ◽  
Veronique Stove ◽  
...  

2020 ◽  
Vol 76 (7) ◽  
pp. 957-967
Author(s):  
Alan Abdulla ◽  
Omar Rogouti ◽  
Nicole G. M. Hunfeld ◽  
Henrik Endeman ◽  
Annemieke Dijkstra ◽  
...  

2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Abdulaziz S. Alobaid ◽  
Steven C. Wallis ◽  
Paul Jarrett ◽  
Therese Starr ◽  
Janine Stuart ◽  
...  

ABSTRACT The treatment of infections in critically ill obese and morbidly obese patients is challenging because of the combined physiological changes that result from obesity and critical illness. The aim of this study was to describe the population pharmacokinetics of piperacillin in a cohort of critically ill patients, including obese and morbidly obese patients. Critically ill patients who received piperacillin-tazobactam were classified according to their body mass index (BMI) as nonobese, obese, and morbidly obese. Plasma samples were collected, and piperacillin concentrations were determined by a validated chromatographic method. Population pharmacokinetic analysis and Monte Carlo dosing simulations were performed using Pmetrics software. Thirty-seven critically ill patients (including 12 obese patients and 12 morbidly obese patients) were enrolled. The patients' mean ± standard deviation age, weight, and BMI were 50 ± 15 years, 104 ± 35 kg, and 38.0 ± 15.0 kg/m2, respectively. The concentration-time data were best described by a two-compartment linear model. The mean ± SD parameter estimates for the final covariate model were a clearance of 14.0 ± 7.1 liters/h, a volume of distribution of the central compartment of 49.0 ± 19.0 liters, an intercompartmental clearance from the central compartment to the peripheral compartment of 0.9 ± 0.6 liters · h−1, and an intercompartmental clearance from the peripheral compartment to the central compartment of 2.3 ± 2.8 liters · h−1. A higher measured creatinine clearance and shorter-duration infusions were associated with a lower likelihood of achieving therapeutic piperacillin exposures in patients in all BMI categories. Piperacillin pharmacokinetics are altered in the presence of obesity and critical illness. As with nonobese patients, prolonged infusions increase the likelihood of achieving therapeutic concentrations.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Fekade B. Sime ◽  
Melissa Lassig-Smith ◽  
Therese Starr ◽  
Janine Stuart ◽  
Saurabh Pandey ◽  
...  

ABSTRACT Evaluation of dosing regimens for critically ill patients requires pharmacokinetic data in this population. This prospective observational study aimed to describe the population pharmacokinetics of unbound ceftolozane and tazobactam in critically ill patients without renal impairment and to assess the adequacy of recommended dosing regimens for treatment of systemic infections. Patients received 1.5 or 3.0 g ceftolozane-tazobactam according to clinician recommendation. Unbound ceftolozane and tazobactam plasma concentrations were assayed, and data were analyzed with Pmetrics with subsequent Monte Carlo simulations. A two-compartment model adequately described the data from twelve patients. Urinary creatinine clearance (CLCR) and body weight described between-patient variability in clearance and central volume of distribution (V), respectively. Mean ± standard deviation (SD) parameter estimates for unbound ceftolozane and tazobactam, respectively, were CL of 7.2 ± 3.2 and 25.4 ± 9.4 liters/h, V of 20.4 ± 3.7 and 32.4 ± 10 liters, rate constant for distribution of unbound ceftolozane or tazobactam from central to peripheral compartment (Kcp) of 0.46 ± 0.74 and 2.96 ± 8.6 h−1, and rate constant for distribution of unbound ceftolozane or tazobactam from peripheral to central compartment (Kpc) of 0.39 ± 0.37 and 26.5 ± 8.4 h−1. With dosing at 1.5 g and 3.0 g every 8 h (q8h), the fractional target attainment (FTA) against Pseudomonas aeruginosa was ≥85% for directed therapy (MIC ≤ 4 mg/liter). However, for empirical coverage (MIC up to 64 mg/liter), the FTA was 84% with the 1.5-g q8h regimen when creatinine clearance is 180 ml/min/1.73 m2, whereas the 3.0-g q8h regimen consistently achieved an FTA of ≥85%. For a target of 40% of time the free drug concentration is above the MIC (40% fT>MIC), 3g q8h by intermittent infusion is suggested unless a highly susceptible pathogen is present, in which case 1.5-g dosing could be used. If a higher target of 100% fT>MIC is required, a 1.5-g loading dose plus a 4.5-g continuous infusion may be adequate.


Sign in / Sign up

Export Citation Format

Share Document