scholarly journals A Method with Parameter for Solving the Spectral Radius of Nonnegative Tensor

2016 ◽  
Vol 5 (1) ◽  
pp. 3-25
Author(s):  
Yi-Yong Li ◽  
Qing-Zhi Yang ◽  
Xi He
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wen Li ◽  
Michael K. Ng

We study the perturbation bound for the spectral radius of an mth-order n-dimensional nonnegative tensor A. The main contribution of this paper is to show that when A is perturbed to a nonnegative tensor A~ by ΔA, the absolute difference between the spectral radii of A and A~ is bounded by the largest magnitude of the ratio of the ith component of ΔAxm-1 and the ith component xm-1, where x is an eigenvector associated with the largest eigenvalue of A in magnitude and its entries are positive. We further derive the bound in terms of the entries of A only when x is not known in advance. Based on the perturbation analysis, we make use of the NQZ algorithm to estimate the spectral radius of a nonnegative tensor in general. On the other hand, we study the backward error matrix ΔA and obtain its smallest error bound for its perturbed largest eigenvalue and associated eigenvector of an irreducible nonnegative tensor. Based on the backward error analysis, we can estimate the stability of computation of the largest eigenvalue of an irreducible nonnegative tensor by the NQZ algorithm. Numerical examples are presented to illustrate the theoretical results of our perturbation analysis.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guimin Liu ◽  
Hongbin Lv

<p style='text-indent:20px;'>We obtain the improved results of the upper and lower bounds for the spectral radius of a nonnegative tensor by its majorization matrix's digraph. Numerical examples are also given to show that our results are significantly superior to the results of related literature.</p>


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xiaoyu Ma ◽  
Yisheng Song

Abstract Tensor eigenvalue problem is one of important research topics in tensor theory. In this manuscript, we consider the properties of Z-eigenpair of irreducible nonnegative tensors. By estimating the ratio of the smallest and largest components of a positive Z-eigenvector for a nonnegative tensor, we present some bounds for the eigenvector and Z-spectral radius of an irreducible and weakly symmetric nonnegative tensor. The proposed bounds complement and extend some existing results. Finally, several examples are given to show that such a bound is different from one given in the literature.


1989 ◽  
Vol 15 (1) ◽  
pp. 275
Author(s):  
NADKARNI ◽  
ROBERTSON
Keyword(s):  

2017 ◽  
Vol 60 (2) ◽  
pp. 411-421
Author(s):  
Luchezar Stoyanov

AbstractWe prove a comprehensive version of the Ruelle–Perron–Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Hölder constant of the function generating the operator appears only polynomially, not exponentially as in previously known estimates.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


Sign in / Sign up

Export Citation Format

Share Document