Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative

Author(s):  
Kishor D. Kucche ◽  
Ashwini D. Mali
2017 ◽  
Vol 24 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Donal O’Regan ◽  
Snezhana Hristova

AbstractThe strict stability properties are generalized to nonlinear Caputo fractional differential equations in the case when both initial points and initial times are changeable. Using Lyapunov functions, some criteria for strict stability, eventually strict stability and strict practical stability are obtained. A brief overview of different types of derivatives in the literature related to the application of Lyapunov functions to Caputo fractional equations are given, and their advantages and disadvantages are discussed with several examples. The Caputo fractional Dini derivative with respect to to initial time difference is used to obtain some sufficient conditions.


2018 ◽  
Vol 21 (1) ◽  
pp. 72-93 ◽  
Author(s):  
Ravi Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

Abstract Lipschitz stability and Mittag-Leffler stability with initial time difference for nonlinear nonautonomous Caputo fractional differential equation are defined and studied using Lyapunov like functions. Some sufficient conditions are obtained. The fractional order extension of comparison principles via scalar fractional differential equations with a parameter is employed. The relation between both types of stability is discussed theoretically and it is illustrated with examples.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1379
Author(s):  
Ravi Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan ◽  
Peter Kopanov

Fractional differential equations with impulses arise in modeling real world phenomena where the state changes instantaneously at some moments. Often, these instantaneous changes occur at random moments. In this situation the theory of Differential equations has to be combined with Probability theory to set up the problem correctly and to study the properties of the solutions. We study the case when the time between two consecutive moments of impulses is exponentially distributed. In connection with the application of the Riemann–Liouville fractional derivative in the equation, we define in an appropriate way both the initial condition and the impulsive conditions. We consider the case when the lower limit of the Riemann–Liouville fractional derivative is fixed at the initial time. We define the so called p-moment Mittag–Leffler stability in time of the model. In the case of integer order derivative the introduced type of stability reduces to the p–moment exponential stability. Sufficient conditions for p–moment Mittag–Leffler stability in time are obtained. The argument is based on Lyapunov functions with the help of the defined fractional Dini derivative. The main contributions of the suggested model is connected with the implementation of impulses occurring at random times and the application of the Riemann–Liouville fractional derivative of order between 0 and 1. For this model the p-moment Mittag–Leffler stability in time of the model is defined and studied by Lyapunov functions once one defines in an appropriate way their Dini fractional derivative.


Sign in / Sign up

Export Citation Format

Share Document