scholarly journals Using a cubic B-spline method in conjunction with a one-step optimized hybrid block approach to solve nonlinear partial differential equations

2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Higinio Ramos ◽  
Anurag Kaur ◽  
V. Kanwar

AbstractIn this paper, we develop an optimized hybrid block method which is combined with a modified cubic B-spline method, for solving non-linear partial differential equations. In particular, it will be applied for solving three well-known problems, namely, the Burgers equation, Buckmaster equation and FitzHugh–Nagumo equation. Most of the developed methods in the literature for non-linear partial differential equations have not focused on optimizing the time step-size and a very small value must be considered to get accurate approximations. The motivation behind the development of this work is to overcome this trade-off up to much extent using a larger time step-size without compromising accuracy. The optimized hybrid block method considered is proved to be A-stable and convergent. Furthermore, the obtained numerical approximations have been compared with exact and numerical solutions available in the literature and found to be adequate. In particular, without using quasilinearization or filtering techniques, the results for small viscosity coefficient for Burgers equation are found to be accurate. We have found that the combination of the two considered methods is computationally efficient for solving non-linear PDEs.

2007 ◽  
Vol 15 (03) ◽  
pp. 353-375 ◽  
Author(s):  
TIMOTHY WALSH ◽  
MONICA TORRES

In this paper, weak formulations and finite element discretizations of the governing partial differential equations of three-dimensional nonlinear acoustics in absorbing fluids are presented. The fluid equations are considered in an Eulerian framework, rather than a displacement framework, since in the latter case the corresponding finite element formulations suffer from spurious modes and numerical instabilities. When taken with the governing partial differential equations of a solid body and the continuity conditions, a coupled formulation is derived. The change in solid/fluid interface conditions when going from a linear acoustic fluid to a nonlinear acoustic fluid is demonstrated. Finite element discretizations of the coupled problem are then derived, and verification examples are presented that demonstrate the correctness of the implementations. We demonstrate that the time step size necessary to resolve the wave decreases as steepening occurs. Finally, simulation results are presented on a resonating acoustic cavity, and a coupled elastic/acoustic system consisting of a fluid-filled spherical tank.


2009 ◽  
Vol 14 (4) ◽  
pp. 515-529 ◽  
Author(s):  
Abdul M. Siddiqui ◽  
Ali R. Ansari ◽  
Ahmed Ahmad ◽  
N. Ahmad

The aim of the present investigation is to study the properties of a Sisko fluid flowing between two intersecting planes. The problem is similar to Taylor's scraping problem for a viscous fluid. We determine the solution of the complicated set of non‐linear partial differential equations describing the flow analytically. The analysis is carried out in detail reflecting the effects of varying the angle of the scraper on the flow. In addition, the tangential and normal stress are also computed. We also show the well known Taylor scraper problem as a special case.


Sign in / Sign up

Export Citation Format

Share Document