scholarly journals Implicit or explicit time integration schemes in the PFEM modeling of metal cutting processes

Author(s):  
J. M. Rodriguez ◽  
S. Larsson ◽  
J. M. Carbonell ◽  
P. Jonsén

AbstractThis work presents the development of an explicit/implicit particle finite element method (PFEM) for the 2D modeling of metal cutting processes. The purpose is to study the efficiency of implicit and explicit time integration schemes in terms of precision, accuracy and computing time. The formulation for implicit and explicit time marching schemes is developed, and a detailed study on the explicit solution steps is presented. The PFEM remeshing procedures for insertion and removal of particles have been improved to model the multiple scales of time and/or space of the solution. The detection and treatment of the rigid tool contact are presented for both, implicit and explicit schemes. The performance of explicit/implicit integration is studied with a set of different two-dimensional orthogonal cutting tests of AISI 4340 steel at cutting speeds ranging from 1 m/s up to 30 m/s. It was shown that if the correct selection of the time integration scheme is made, the computing time can decrease up to 40 times. It allows us to affirm that the computing time of the PFEM simulations can be excessive due to the used time marching scheme independently of the meshing process. As a practical result, a set of recommendations to select the time integration schemes for a given cutting speed are given. This is intended to minimize one of the negative constraints pointed out by the industry when using metal cutting simulators.

1986 ◽  
Vol 65 (2) ◽  
pp. 253-272 ◽  
Author(s):  
L. Garcia ◽  
H.R. Hicks ◽  
B.A. Carreras ◽  
L.A. Charlton ◽  
J.A. Holmes

2020 ◽  
Vol 20 (13) ◽  
pp. 2041003 ◽  
Author(s):  
Wooram Kim ◽  
J. N. Reddy

In this paper, a number of recently proposed implicit and explicit composite time integration schemes are reviewed and critically evaluated. To give suitable guidelines of using them in practical transient analyses of structural problems, numerical performances of these schemes are compared through illustrative examples. Meaningful insights into computational aspects of the composite schemes are also provided. In the discussion, the role of the splitting ratio of the recent composite schemes is also investigated through a different point of view, and similarities and differences of various composite schemes are also studied. It is shown that the explicit composite scheme proposed recently by the authors can noticeably increase the efficiency and the accuracy of linear and nonlinear transient analyses when compared with other well-known composite schemes.


Sign in / Sign up

Export Citation Format

Share Document