scholarly journals Lessons for the clinical nephrologist: ureteric obstruction secondary to blood clot after kidney biopsy

Author(s):  
Daniel V. O’Hara ◽  
Jeffrey K. Wong ◽  
Bruce Cooper ◽  
Germaine Wong ◽  
Muh Geot Wong ◽  
...  
1966 ◽  
Vol 38 (2) ◽  
pp. 177-181 ◽  
Author(s):  
ALAN SIMPSON ◽  
EDWIN C. ASHBY

2012 ◽  
Vol 42 (8) ◽  
pp. 29
Author(s):  
ELIZABETH MECHCATIE
Keyword(s):  

1988 ◽  
Vol 59 (02) ◽  
pp. 310-315 ◽  
Author(s):  
P W Koppert ◽  
E Hoegee-de Nobel ◽  
W Nieuwenhuizen

SummaryWe have developed a sandwich-type enzyme immunoassay (EIA) for the quantitation of fibrin degradation products (FbDP) in plasma with a time-to-result of only 45 minutes.* The assay is based on the combination of the specificities of two monoclonal antibodies (FDP-14 and DD-13), developed in our institute. FDP-14, the capture antibody, binds both fibrinogen degradation products (FbgDP) and FbDP, but does not react with the parent fibrin(ogen) molecules. It has its epitope in the E-domain of the fibrinogen molecule on the Bβ-chain between amino acids 54-118. Antibody DD-13 was raised using D-dimer as antigen and is used as a tagging antibody, conjugated with horse-radish peroxidase. A strong positive reaction is obtained with a whole blood clot lysate (lysis induced by tissue-type plasminogen activator) which is used as a standard. The EIA does virtually not detect FbgDP i. e. purified fragments X, Y, or FbgDP generated in vitro in plasma by streptokinase treatment. This indicates that the assay is specific for fibrin degradation products.We have successfully applied this assay to the plasma of patients with a variety of diseased states. In combination with the assay previously developed by us for FbgDP and for the total amount of FbgDP + FbDP (TDP) in plasma, we are now able to study the composition of TDP in patients plasma in terms of FbgDP and FbDP.


1991 ◽  
Vol 65 (05) ◽  
pp. 549-552 ◽  
Author(s):  
A Blinc ◽  
G Planinšič ◽  
D Keber ◽  
O Jarh ◽  
G Lahajnar ◽  
...  

SummaryMagnetic resonance imaging was employed to study the dependence of clot lysing patterns on two different modes of transport of urokinase into whole blood clots. In one group of clots (nonperfused clots, n1 = 10), access of urokinase to the fibrin network was possible by diffusion only, whereas in the other group (perfused clots, n2 = 10) bulk flow of plasma containing urokinase was instituted through occlusive clots by a pressure difference of 3 .7 kPa (37 cm H2O) across 3 cm long clots with a diameter of 4 mm. It was determined separately that this pressure difference resulted in a volume flow rate of 5.05 ± 2.4 × 10−2 ml/min through occlusive clots. Perfused clots diminished in size significantly in comparison to nonperfused ones already after 20 min (p <0.005). Linear regression analysis of two-dimensional clot sizes measured by MRI showed that the rate of lysis was more than 50-times faster in the perfused group in comparison to the nonperfused group. It was concluded that penetration of the thrombolytic agent into clots by perfusion is much more effective than by diffusion. Our results might have some implications for understanding the differences in lysis of arterial and venous thrombi.


1967 ◽  
Vol 17 (03/04) ◽  
pp. 405-411
Author(s):  
M Hume

SummaryUrokinase and urokinase-activated plasmin have been given to the dog and rabbit. A thrombolytic state has been induced. Purified urokinase has induced lysis of the experimental radioactive blood clot embolus in the circulation. Demonstration of effectiveness in this animal experiment is hampered by inhibition of the agents in the circulation to a degree much greater than was noted in previous experiments with streptokinase. In vitro testing indicates that under proper conditions urokinase will be an effective agent in the treatment of human thromboembolism.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Haider S Al-Hadad ◽  
Aqeel Abbas Matrood ◽  
Maha Abdalrasool Almukhtar ◽  
Haider Jabur Kehiosh ◽  
Riyadh Muhi Al-Saegh

Background: Systemic lupus erythematosus (SLE) is an autoimmune disease. Few biomarkers for SLE have been validated and widely accepted for the laboratory follow-up of inflammatory activity. In SLE patients, with lupus nephritis (LN), complement activation leads to fluctuation of serum C3 and C4 that are frequently used as clinicalm biomarker of disease activity in SLE. Patients and Methods: In this study the number of patients were 37, seven patients were excluded for incomplete data collection, 28 were females ,2 were males. The duration of the study is two years from 2015 to 2017. Patients were considered to have SLE and LN according to American College of Rheumatology (ACR) criteria, and International Society of Nephrology/ Renal Pathology Society (ISN/RPS). All patients were evaluated withm clinical presentation, laboratory investigations. Our patients underwent kidney biopsy according to standard procedure by Kerstin Amann, and their tissue specimens were studied in the laboratory with light microscope (LM) and immunofluorescence microscope reagents. The relationship between the serological markers and immunofluorescence deposits in kidney biopsy of all patients were studied using the statistical analysis of Pearson correlation and single table student's T test. A P value 0.05 was considered statistically significant. Results: The granular pattern of IF deposits was present in all LN patients, and in more than two third of patients these IF deposits presented in glomerular, tubular, and mesangium sites. While less than one third of patients had IF deposits in the mesangium only. There was no statistically significant correlation between serum ANA, anti-dsDNA, and IF deposits of different types. There was significant correlation between serum C3 and C4 hypocomplementemia and IgG immune deposits in kidney biopsy, and there was significant relationship between serum C3 hypocomplementemia and full house immunofluorescence (FHIF) deposits inm kidney biopsy.Conclusions:Immunofluorescence deposits is mainly granular pattern in LN patients. There was no significant association between serum ANA, anti-dsDNA, and immune deposits in kidney tissue. Immunofluorescence deposits of IgG type correlates significantly with serum C3 and C4 hypocomplemetemia, and these immune deposits in association with low complement levels correlates with LN flare. There was significant correlation between C3 hypocomplementemia and FHIF.


Sign in / Sign up

Export Citation Format

Share Document