scholarly journals Bilateral teleoperation with object-adaptive mapping

Author(s):  
Xiao Gao ◽  
João Silvério ◽  
Sylvain Calinon ◽  
Miao Li ◽  
Xiaohui Xiao

AbstractTask space mapping approaches for bilateral teleoperation, namely object-centered ones, have yielded the most promising results. In this paper, we propose an invertible mapping approach to realize teleoperation through online motion mapping by taking into account the locations of objects or tools in manipulation skills. It is applied to bilateral teleoperation, with the goal of handling different object/tool/landmark locations in the user and robot workspaces while the remote objects are moving online. The proposed approach can generate trajectories in an online manner to adapt to moving objects, where impedance controllers allow the user to exploit the haptic feedback to teleoperate the robot. Teleoperation experiments of pick-and-place tasks and valve turning tasks are carried out with two 7-axis torque-controlled Panda robots. Our approach shows higher efficiency and adaptability compared with traditional mappings.

2020 ◽  
Vol 4 (4) ◽  
pp. 78
Author(s):  
Andoni Rivera Pinto ◽  
Johan Kildal ◽  
Elena Lazkano

In the context of industrial production, a worker that wants to program a robot using the hand-guidance technique needs that the robot is available to be programmed and not in operation. This means that production with that robot is stopped during that time. A way around this constraint is to perform the same manual guidance steps on a holographic representation of the digital twin of the robot, using augmented reality technologies. However, this presents the limitation of a lack of tangibility of the visual holograms that the user tries to grab. We present an interface in which some of the tangibility is provided through ultrasound-based mid-air haptics actuation. We report a user study that evaluates the impact that the presence of such haptic feedback may have on a pick-and-place task of the wrist of a holographic robot arm which we found to be beneficial.


2018 ◽  
Vol 66 (7) ◽  
pp. 3169-3185 ◽  
Author(s):  
Wei Zhang ◽  
Feng Feng ◽  
Venu-Madhav-Reddy Gongal-Reddy ◽  
Jianan Zhang ◽  
Shuxia Yan ◽  
...  

Author(s):  
Venkat Durbha ◽  
Perry Y. Li

Abstract This paper presents the control methodology and experimental results for the bilateral haptic tele-operation of a pneumatic actuated crawling robot. The two front legs of a robot are teleoperated via a pair of PHANToM haptic interfaces. The system gives the human operator the impression that he/she is physically moving and positioning the robot legs. As the legs hit the ground, the operator would also feel the reaction force via the haptic feedback provided by the PHANToMs. To reduce the physical effort by the operator, kinematic and power scaling factors are applied. For stable tele-operation, the closed loop system is controlled to behave like a common energetically passive mechanical tool interacting with the human operator (on the PHANToM’s end) and the physical environment (on the Crawler’s end). The control design strategy treats the pneumatic actuators as a two-port nonlinear spring. While the mechanical port of the actuator acts on the mechanical structure of the crawler’s leg, the fluid port of the actuator is controlled to mimic the interaction between the pneumatic spring and the PHANToM, and to achieve co-ordination. The control methodology has been tested experimentally. While performing crawling motion, the RMS error of the robot foot placement error was 7mm, well within the crawler’s foot diameter of 25.4mm.


Author(s):  
Feng Feng ◽  
Venu-Madhav-Reddy Gongal-Reddy ◽  
Shunlu Zhang ◽  
Qi-Jun Zhang

Sign in / Sign up

Export Citation Format

Share Document