space mapping
Recently Published Documents


TOTAL DOCUMENTS

973
(FIVE YEARS 142)

H-INDEX

49
(FIVE YEARS 5)

2022 ◽  
Vol 3 (1) ◽  
pp. 1-15
Author(s):  
Divya Jyothi Gaddipati ◽  
Jayanthi Sivaswamy

Early detection and treatment of glaucoma is of interest as it is a chronic eye disease leading to an irreversible loss of vision. Existing automated systems rely largely on fundus images for assessment of glaucoma due to their fast acquisition and cost-effectiveness. Optical Coherence Tomographic ( OCT ) images provide vital and unambiguous information about nerve fiber loss and optic cup morphology, which are essential for disease assessment. However, the high cost of OCT is a deterrent for deployment in screening at large scale. In this article, we present a novel CAD solution wherein both OCT and fundus modality images are leveraged to learn a model that can perform a mapping of fundus to OCT feature space. We show how this model can be subsequently used to detect glaucoma given an image from only one modality (fundus). The proposed model has been validated extensively on four public andtwo private datasets. It attained an AUC/Sensitivity value of 0.9429/0.9044 on a diverse set of 568 images, which is superior to the figures obtained by a model that is trained only on fundus features. Cross-validation was also done on nearly 1,600 images drawn from a private (OD-centric) and a public (macula-centric) dataset and the proposed model was found to outperform the state-of-the-art method by 8% (public) to 18% (private). Thus, we conclude that fundus to OCT feature space mapping is an attractive option for glaucoma detection.


2021 ◽  
pp. 095679762110345
Author(s):  
Guido Marco Cicchini ◽  
Giovanni Anobile ◽  
Eleonora Chelli ◽  
Roberto Arrighi ◽  
David C. Burr

Mapping number to space is natural and spontaneous but often nonveridical, showing a clear compressive nonlinearity that is thought to reflect intrinsic logarithmic encoding of numerical values. We asked 78 adult participants to map dot arrays onto a number line across nine trials. Combining participant data, we confirmed that on the first trial, mapping was heavily compressed along the number line, but it became more linear across trials. Responses were well described by logarithmic compression but also by a parameter-free Bayesian model of central tendency, which quantitatively predicted the relationship between nonlinearity and number acuity. To experimentally test the Bayesian hypothesis, we asked 90 new participants to complete a color-line task in which they mapped noise-perturbed color patches to a “color line.” When there was more noise at the high end of the color line, the mapping was logarithmic, but it became exponential with noise at the low end. We conclude that the nonlinearity of both number and color mapping reflects contextual Bayesian inference processes rather than intrinsic logarithmic encoding.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1341
Author(s):  
Piotr Kurgan

High-performance and small-size on-chip inductors play a critical role in contemporary radio-frequency integrated circuits. This work presents a reliable surrogate modeling technique combining low-fidelity EM simulation models, response surface approximations based on kriging interpolation, and space mapping technology. The reported method is useful for the development of broadband and highly accurate data-driven models of integrated inductors within a practical timeframe, especially in terms of the computational expense of training data acquisition. Application of the constructed surrogate model for rapid design optimization of a compact on-chip inductor is demonstrated. The optimized EM-validated design solution can be reached at a low computational cost, which is a considerable improvement over existing approaches. In addition, this work provides a description and illustrates the usefulness of a multi-fidelity design optimization method incorporating EM computational models of graduated complexity and local polynomial approximations managed by an output space mapping optimization framework. As shown by the application example, the final design solution is obtained at the cost of a few high-fidelity EM simulations of a small-size integrated coil. A supplementary description of variable-fidelity EM computational models and a trade-off between model accuracy and its processing time complements the work.


2021 ◽  
Vol MA2021-02 (12) ◽  
pp. 631-631
Author(s):  
Kazutoshi Yoshioka ◽  
Gai Ogasawara ◽  
Keita Sahara ◽  
Yuki Shibayama ◽  
Ichiro Hirosawa ◽  
...  

Author(s):  
Xiao Gao ◽  
João Silvério ◽  
Sylvain Calinon ◽  
Miao Li ◽  
Xiaohui Xiao

AbstractTask space mapping approaches for bilateral teleoperation, namely object-centered ones, have yielded the most promising results. In this paper, we propose an invertible mapping approach to realize teleoperation through online motion mapping by taking into account the locations of objects or tools in manipulation skills. It is applied to bilateral teleoperation, with the goal of handling different object/tool/landmark locations in the user and robot workspaces while the remote objects are moving online. The proposed approach can generate trajectories in an online manner to adapt to moving objects, where impedance controllers allow the user to exploit the haptic feedback to teleoperate the robot. Teleoperation experiments of pick-and-place tasks and valve turning tasks are carried out with two 7-axis torque-controlled Panda robots. Our approach shows higher efficiency and adaptability compared with traditional mappings.


Author(s):  
Jennifer Weißen ◽  
Simone Göttlich ◽  
Claudia Totzeck

AbstractWe propose a space mapping-based optimization algorithm for microscopic interacting particle dynamics which are infeasible for direct optimization. This is of relevance for example in applications with bounded domains for which the microscopic optimization is difficult. The space mapping algorithm exploits the relationship of the microscopic description of the interacting particle system and a corresponding macroscopic description as partial differential equation in the “many particle limit”. We validate the approach with the help of a toy problem that allows for direct optimization. Then we study the performance of the algorithm in two applications. A pedestrian flow is considered and the transportation of goods on a conveyor belt is optimized. The numerical results underline the feasibility of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document