ASME/BATH 2019 Symposium on Fluid Power and Motion Control
Latest Publications


TOTAL DOCUMENTS

56
(FIVE YEARS 56)

H-INDEX

2
(FIVE YEARS 2)

Published By American Society Of Mechanical Engineers

9780791859339

Author(s):  
Garrett R. Bohach ◽  
Nishanth ◽  
Eric Severson ◽  
James D. Van de Ven

Abstract To meet the growing trend of electrification of mechanical systems, this paper presents a compactly integrated electric motor and hydraulic pump. The proposed application for this machine requires high flow rates at low pressure differentials and four quadrant operation. The hydraulic pump architecture selected for this machine is a radial ball piston pump. An inside impinged version of this architecture allows for efficient filling of the chambers and is radial balanced, both of which allow highspeed operation for increased power density. The radial ball piston pump is less expensive to manufacture and is radially more compact than a standard radial cylindrical piston pump. A model of the pump and the integrated electric motor have been created to study scaling relationships and drive detailed design and optimization. The scaling study considers how displacement is affected by pump diameter, and how the diameter and required torque change with angular velocity. The detailed model considers the effect of valve timing, piston-cylinder clearance, and pump geometry on the efficiency. The model is then exercised in an optimization of the machine parameters.


Author(s):  
Matthias Liermann ◽  
Christian Feller ◽  
Florian Lindinger ◽  
Dirk Runge

Abstract The paper presents a HiL test setup for hydraulic propel systems that includes a multi-body dynamic simulation of a vehicle in a realistic 3D environment. It allows testing of driving scenarios under load conditions that would otherwise be very difficult to obtain. The hydraulic-mechanical part of the simulation is modeled in Simulink. An open-source C++ physics engine is used to model the vehicle multi-body mechanics and collision detection between the vehicle and the 3D environment. Despite the high complexity of the hydraulic drive train component models, the constraint of real-time execution of the simulation on a real-time target can be fulfilled.


Author(s):  
Seth Thomas ◽  
Eric J. Barth

Abstract The thermocompressor, a little-known class of Stirling devices that efficiently compresses gas, presents new challenges for modeling and experimental validation. In modeling, traditional analytic assumptions about displacer motion are limiting. In experimental verification, few devices have actually been built and tested. In this paper, the authors test the feasibility of a lumped-parameter approach for predicting the performance of Stirling thermocompressors subject to different displacer motion profiles. Since the displacer of a thermocompressor can be controlled independently, unlike kinematic Stirling engines or dynamic Stirling engines, and has a large influence on output power and efficiency of the device, it is crucial that this is well captured by a system dynamics model for control. Key model parameters are simulated and results are experimentally verified on one of the few, if only, experimental thermocompressor platforms in the world. Conclusions are drawn regarding simplified modeling of the regenerator’s effectiveness and the effects on device work output by varying the displacer piston’s motion profile using different waveforms.


Author(s):  
Venkat Durbha ◽  
Perry Y. Li

Abstract This paper presents the control methodology and experimental results for the bilateral haptic tele-operation of a pneumatic actuated crawling robot. The two front legs of a robot are teleoperated via a pair of PHANToM haptic interfaces. The system gives the human operator the impression that he/she is physically moving and positioning the robot legs. As the legs hit the ground, the operator would also feel the reaction force via the haptic feedback provided by the PHANToMs. To reduce the physical effort by the operator, kinematic and power scaling factors are applied. For stable tele-operation, the closed loop system is controlled to behave like a common energetically passive mechanical tool interacting with the human operator (on the PHANToM’s end) and the physical environment (on the Crawler’s end). The control design strategy treats the pneumatic actuators as a two-port nonlinear spring. While the mechanical port of the actuator acts on the mechanical structure of the crawler’s leg, the fluid port of the actuator is controlled to mimic the interaction between the pneumatic spring and the PHANToM, and to achieve co-ordination. The control methodology has been tested experimentally. While performing crawling motion, the RMS error of the robot foot placement error was 7mm, well within the crawler’s foot diameter of 25.4mm.


Author(s):  
Matthias Scherrer ◽  
Rudolf Scheidl ◽  
Bernhard Manhartsgruber

Abstract The hydraulic binary counter requires switching valves with a hysteretic response. In this paper an elastic snap through element is studied as means for that. The concept is based on a buckling beam which is elastically supported in axial direction in order to adjust its buckling properties with moderate manufacturing precision and to assure a well defined snap through behavior. The elastic support is provided by a cantilever beam. A rigorous optimization is performed heading for a most compact and fatigue durable design which exhibits the required lateral force displacement characteristics. A genetic algorithm is used to find the global design optimum. The stress/displacement properties of each design variant are computed by a compact model of the snap through system. It is derived by a Ritz method to obtain approximate solutions of the nonlinear buckling beam behavior. Its validity is checked by a Finite Element model. A compact design is possible if high strength spring steel is used for the elastic elements.


Author(s):  
Olivier Reinertz ◽  
Katharina Schmitz

Abstract In the scope of this paper, a novel efficiency optimized supply pressure adaptive concept of pneumatic pressure boosters is presented. It is deduced from a profound analysis of state of the art components. The working cycle of the pump chambers can be divided into a filling, compression, pumping and decompression phase. A promising solution for efficiency improvements, which is further analyzed in the scope of this paper, is to adapt the required force of the compression chambers by nonlinear mechanics. Thus, a smaller force at the end of the stroke is required and a reduced air consumption of the driving chamber occurs. As the force demand of the compression chamber and therewith the load distribution over the stroke changes with the operational pressures, an adaptive concept needs to be implemented. The novel device and its parameterization are deduced by means of an analytical description of state of the art pressure boosters. Subsequently, it is investigated by one-dimensional simulation in DSHplus. The results show broad applicability of the method in relevant applications and huge energy saving potentials compared to state of the art products.


Author(s):  
Sondre Nordås ◽  
Morten K. Ebbesen ◽  
Torben O. Andersen

Abstract A subsea crane is normally mounted on a floating vessel and equipped with a winch system. The crane can operate in water down to 3000 m. The vessel tends to move up and down due to waves. This heave motion makes offshore lifting operations challenging. In order to ease the winch operation in rough sea, the winch can be equipped with additional systems like active heave compensation and constant tension. In active heave compensation and constant tension system, both motion and force control of the winch are important. This paper presents a digital displacement winch drive system and gives a description of challenges related to subsea lifting operations. The operation challenges are used to design a set of test cases for evaluating the performance of the digital displacement winch drive system.


Author(s):  
Magnus F. Asmussen ◽  
Henrik C. Pedersen ◽  
Lina Lilleengen ◽  
Andreas Larsen ◽  
Thomas Farsakoglou

Abstract Pitch systems impose an important part of today’s wind turbines, where they are both used for power regulation and serve as part of a turbines safety system. Any failure on a pitch system is therefore equal to an increase in downtime of the turbine and should hence be avoided. By implementing a Fault Detection and Diagnosis (FDD) scheme faults may be detected and estimated before resulting in a failure, thus increasing the availability and aiding in the maintenance of the wind turbine. The focus of this paper is therefore on the development of a FDD algorithm to detect leakage and sensor faults in a fluid power pitch system. The FDD algorithm is based on a State Augmented Extended Kalman Filter (SAEKF) and a bank of observers, which is designed utilizing an experimentally validated model of a pitch system. The SAEKF is designed to detect and estimate both internal and external leakage faults, while also estimating the unknown external load on the system, and the bank of observers to detect sensor drop-outs. From simulation it is found that the SAEKF may detect both abrupt and evolving internal and external leakages, while being robust towards noise and variation in system parameters. Similar it is found that the scheme is able to detect sensor drop-outs, but is less robust towards this.


Author(s):  
Lionel Hulttinen ◽  
Janne Koivumäki ◽  
Jouni Mattila

Abstract In this paper, a nonlinear model-based controller with parameter identification is designed for a rigid open-chain manipulator arm actuated by servovalve-controlled hydraulic cylinders. The arising problem in adopting model-based controllers is how to acquire accurate estimates of system parameters, with limited available information about either the hydraulic actuator parameters or manipulator link inertial parameters. The objective of this study is to identify both the rigid-body parameters of the links and the hydraulic actuator parameters from collected cylinder chamber pressure and joint angle data, while no a priori knowledge of these parameters is available. Same physical plant models are used for control design as well as for parameter identification. Experimental results show that the proposed nonlinear model-based control scheme results in acceptable Cartesian position tracking performance in free-space motion when using the identified parameters.


Author(s):  
Julian Angerhausen ◽  
Hubertus Murrenhoff ◽  
Bo N. J. Persson ◽  
Katharina Schmitz

Abstract Seals are crucial machine elements, for example in hydraulic cylinders. However, especially in regard to dynamic seals, the theoretical understanding of the sealing mechanism is still insufficient. A physically motivated simulation can help to gain a more detailed understanding. In this contribution a elastohydrodynamic (EHD) seal simulation is presented. It is directly implemented in the commercial Software ABAQUS. The fluid film is considered by implementing the Reynolds equation. For a physically motivated simulation Persson’s theory of contact mechanics and rubber friction is used to calculate the solid contribution to the total friction of a hydraulic seal. Simulations for an oscillating motion of a cylinder rod, sealed by an O-ring seal, are carried out for different velocities and pressures. A qualitative comparison between measurement and simulation is provided. Hysteresis effects and the contributions from both, adhesive and viscoelastic friction to the total solid friction are investigated. The physical origin of these effects is discussed in order to provide a detailed understanding of the dynamic sealing mechanism.


Sign in / Sign up

Export Citation Format

Share Document