A Decoupled Method for Credibility-Based Design Optimization with Fuzzy Variables

2020 ◽  
Vol 22 (3) ◽  
pp. 844-858 ◽  
Author(s):  
Lu Wang ◽  
Zhenzhou Lu ◽  
Beixi Jia
2005 ◽  
Vol 128 (4) ◽  
pp. 928-935 ◽  
Author(s):  
Liu Du ◽  
K. K. Choi ◽  
Byeng D. Youn ◽  
David Gorsich

The reliability based design optimization (RBDO) method is prevailing in stochastic structural design optimization by assuming the amount of input data is sufficient enough to create accurate input statistical distribution. If the sufficient input data cannot be generated due to limitations in technical and/or facility resources, the possibility-based design optimization (PBDO) method can be used to obtain reliable designs by utilizing membership functions for epistemic uncertainties. For RBDO, the performance measure approach (PMA) is well established and accepted by many investigators. It is found that the same PMA is a very much desirable approach also for the PBDO problems. In many industry design problems, we have to deal with uncertainties with sufficient data and uncertainties with insufficient data simultaneously. For these design problems, it is not desirable to use RBDO since it could lead to an unreliable optimum design. This paper proposes to use PBDO for design optimization for such problems. In order to treat uncertainties as fuzzy variables, several methods for membership function generation are proposed. As less detailed information is available for the input data, the membership function that provides more conservative optimum design should be selected. For uncertainties with sufficient data, the membership function that yields the least conservative optimum design is proposed by using the possibility-probability consistency theory and the least conservative condition. The proposed approach for design problems with mixed type input uncertainties is applied to some example problems to demonstrate feasibility of the approach. It is shown that the proposed approach provides conservative optimum design.


Author(s):  
Liu Du ◽  
Kyung K. Choi

Structural analysis and design optimization have recently been extended to consider various uncertainties. If the statistical data for the uncertainties are sufficient to construct the input distribution function, the uncertainties can be treated as random variables and RBDO is used; otherwise, the uncertainties can be treated as fuzzy variables and PBDO is used. However, many structural design problems include both uncertainties with sufficient data and uncertainties with insufficient data. For these problems, RBDO will yield an unreliable design since the distribution functions of uncertainties are not believable. On the other hand, treating the random variables as fuzzy variables and invoking PBDO may yield too conservative design with a higher optimum cost. This paper proposes a new design formulation using the performance measure approach (PMA). For the inverse analysis, this paper proposes a new most probable/possible point (MPPP) search method called maximal failure search (MFS), which is an integration of the enhanced hybrid mean value method (HMV+) and maximal possibility search (MPS) method. Some mathematical and physical examples are used to demonstrate the proposed inverse analysis method and design formulation.


2014 ◽  
Vol 255 ◽  
pp. 52-73 ◽  
Author(s):  
Zhang-chun Tang ◽  
Zhen-zhou Lu ◽  
Ji-xiang Hu

Sign in / Sign up

Export Citation Format

Share Document