A Generalized (2 + 1)-Dimensional Calogaro–Bogoyavlenskii–Schiff Equation: Symbolic Computation, Symmetry Reductions, Exact Solutions, Conservation Laws

Author(s):  
M. C. Moroke ◽  
B. Muatjetjeja ◽  
A. R. Adem
Filomat ◽  
2012 ◽  
Vol 26 (5) ◽  
pp. 957-964 ◽  
Author(s):  
Masood Khalique

In this paper we study the coupled integrable dispersionless system (CIDS), which arises in the analysis of several problems in applied mathematics and physics. Lie symmetry analysis is performed on CIDS and symmetry reductions and exact solutions with the aid of simplest equation method are obtained. In addition, the conservation laws of the CIDS are also derived using the multiplier (and homotopy) approach.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2083
Author(s):  
María S. Bruzón ◽  
Tamara M. Garrido-Letrán ◽  
Rafael de la Rosa

The Benjamin–Bona–Mahony equation describes the unidirectional propagation of small-amplitude long waves on the surface of water in a channel. In this paper, we consider a family of generalized Benjamin–Bona–Mahony–Burgers equations depending on three arbitrary constants and an arbitrary function G(u). We study this family from the standpoint of the theory of symmetry reductions of partial differential equations. Firstly, we obtain the Lie point symmetries admitted by the considered family. Moreover, taking into account the admitted point symmetries, we perform symmetry reductions. In particular, for G′(u)≠0, we construct an optimal system of one-dimensional subalgebras for each maximal Lie algebra and deduce the corresponding (1+1)-dimensional nonlinear third-order partial differential equations. Then, we apply Kudryashov’s method to look for exact solutions of the nonlinear differential equation. We also determine line soliton solutions of the family of equations in a particular case. Lastly, through the multipliers method, we have constructed low-order conservation laws admitted by the family of equations.


Sign in / Sign up

Export Citation Format

Share Document