On the Convergence of Harmonic Mean Newton Method Under $$\omega $$ Continuity Condition in Banach Spaces

Author(s):  
Ioannis K. Argyros ◽  
Debasis Sharma ◽  
Christopher I. Argyros ◽  
Sanjaya Kumar Parhi ◽  
Shanta Kumari Sunanda
Author(s):  
Debasis Sharma ◽  
◽  
Sanjaya Kumar Parhi ◽  
Shanta Kumari Sunanda ◽  
◽  
...  

2020 ◽  
Vol 87 (1-2) ◽  
pp. 56
Author(s):  
Neha Gupta ◽  
J. P. Jaiswal

The motive of this article is to analyze the semilocal convergence of a well existing iterative method in the Banach spaces to get the solution of nonlinear equations. The condition, we assume that the nonlinear operator fulfills the Hölder continuity condition which is softer than the Lipschitz continuity and works on the problems in which either second order Frèchet derivative of the nonlinear operator is challenging to calculate or does not hold the Lipschitz condition. In the convergence theorem, the existence of the solution x<sup>*</sup> and its uniqueness along with prior error bound are established. Also, the <em>R</em>-order of convergence for this method is proved to be at least 4+3q. Two numerical examples are discussed to justify the included theoretical development followed by an error bound expression.


2019 ◽  
Vol 27 (4) ◽  
pp. 539-557
Author(s):  
Barbara Kaltenbacher ◽  
Andrej Klassen ◽  
Mario Luiz Previatti de Souza

Abstract In this paper, we consider the iteratively regularized Gauss–Newton method, where regularization is achieved by Ivanov regularization, i.e., by imposing a priori constraints on the solution. We propose an a posteriori choice of the regularization radius, based on an inexact Newton/discrepancy principle approach, prove convergence and convergence rates under a variational source condition as the noise level tends to zero and provide an analysis of the discretization error. Our results are valid in general, possibly nonreflexive Banach spaces, including, e.g., {L^{\infty}} as a preimage space. The theoretical findings are illustrated by numerical experiments.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Claudio Estatico ◽  
Alessandro Fedeli ◽  
Matteo Pastorino ◽  
Andrea Randazzo

A method for microwave imaging of dielectric targets is proposed. It is based on a tomographic approach in which the field scattered by an unknown target (and collected in a proper observation domain) is inverted by using an inexact-Newton method developed inLpBanach spaces. In particular, the extension of the approach to multifrequency data processing is reported. The mathematical formulation of the new method is described and the results of numerical simulations are reported and discussed, analyzing the behavior of the multifrequency processing technique combined with the Banach spaces reconstruction method.


2018 ◽  
Vol 26 (3) ◽  
pp. 311-333 ◽  
Author(s):  
Pallavi Mahale ◽  
Sharad Kumar Dixit

AbstractJin Qinian and Min Zhong [10] considered an iteratively regularized Gauss–Newton method in Banach spaces to find a stable approximate solution of the nonlinear ill-posed operator equation. They have considered a Morozov-type stopping rule (Rule 1) as one of the criterion to stop the iterations and studied the convergence analysis of the method. However, no error estimates have been obtained for this case. In this paper, we consider a modified variant of the method, namely, the simplified Gauss–Newton method under both an a priori as well as a Morozov-type stopping rule. In both cases, we obtain order optimal error estimates under Hölder-type approximate source conditions. An example of a parameter identification problem for which the method can be implemented is discussed in the paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Rongfei Lin ◽  
Yueqing Zhao ◽  
Zdeněk Šmarda ◽  
Yasir Khan ◽  
Qingbiao Wu

Newton-Kantorovich and Smale uniform type of convergence theorem of a deformed Newton method having the third-order convergence is established in a Banach space for solving nonlinear equations. The error estimate is determined to demonstrate the efficiency of our approach. The obtained results are illustrated with three examples.


2013 ◽  
Vol 10 (04) ◽  
pp. 1350021 ◽  
Author(s):  
M. PRASHANTH ◽  
D. K. GUPTA

A continuation method is a parameter based iterative method establishing a continuous connection between two given functions/operators and used for solving nonlinear equations in Banach spaces. The semilocal convergence of a continuation method combining Chebyshev's method and Convex acceleration of Newton's method for solving nonlinear equations in Banach spaces is established in [J. A. Ezquerro, J. M. Gutiérrez and M. A. Hernández [1997] J. Appl. Math. Comput.85: 181–199] using majorizing sequences under the assumption that the second Frechet derivative satisfies the Lipschitz continuity condition. The aim of this paper is to use recurrence relations instead of majorizing sequences to establish the convergence analysis of such a method. This leads to a simpler approach with improved results. An existence–uniqueness theorem is given. Also, a closed form of error bounds is derived in terms of a real parameter α ∈ [0, 1]. Four numerical examples are worked out to demonstrate the efficacy of our convergence analysis. On comparing the existence and uniqueness region and error bounds for the solution obtained by our analysis with those obtained by using majorizing sequences, it is found that our analysis gives better results in three examples, whereas in one example it gives the same results. Further, we have observed that for particular values of the α, our analysis reduces to those for Chebyshev's method (α = 0) and Convex acceleration of Newton's method (α = 1) respectively with improved results.


Sign in / Sign up

Export Citation Format

Share Document