scholarly journals Structural architectures of polymer proton exchange membranes suitable for high-temperature fuel cell applications

Author(s):  
Junming Dai ◽  
Yu Zhang ◽  
Gang Wang ◽  
Yongbing Zhuang
2019 ◽  
Vol 44 (12) ◽  
pp. 6116-6135 ◽  
Author(s):  
C.Y. Wong ◽  
W.Y. Wong ◽  
K. Ramya ◽  
M. Khalid ◽  
K.S. Loh ◽  
...  

Author(s):  
Peng Wang ◽  
Jinwu Peng ◽  
Bibo Yin ◽  
Xian-Zhu Fu ◽  
Lei Wang ◽  
...  

Porous polybenzimidazole (PBI) membranes with high ability to store phosphoric acid (PA) and transfer protons are promising materials as high-temperature proton exchange membranes (HT-PEMs) for fuel cell applications. However, porous...


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1000
Author(s):  
Guoxiao Xu ◽  
Juan Zou ◽  
Zhu Guo ◽  
Jing Li ◽  
Liying Ma ◽  
...  

Although sulfonic acid (SA)-based proton-exchange membranes (PEMs) dominate fuel cell applications at low temperature, while sulfonation on polymers would strongly decay the mechanical stability limit the applicable at elevated temperatures due to the strong dependence of proton conduction of SA on water. For the purpose of bifunctionally improving mechanical property and high-temperature performance, Nafion membrane, which is a commercial SA-based PEM, is composited with fabricated silica nanofibers with a three-dimensional network structure via electrospinning by considering the excellent water retention capacity of silica. The proton conductivity of the silica nanofiber–Nafion composite membrane at 110 °C is therefore almost doubled compared with that of a pristine Nafion membrane, while the mechanical stability of the composite Nafion membrane is enhanced by 44%. As a result, the fuel cell performance of the silica nanofiber-Nafion composite membrane measured at high temperature and low humidity is improved by 38%.


Sign in / Sign up

Export Citation Format

Share Document