Brackish groundwater and solar energy for desalination plants

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Germán Eduardo Dévora-Isiordia ◽  
Armando Gabriel Canales-Elorduy ◽  
Rubén Chávez-Guillén
2019 ◽  
Vol 11 (3) ◽  
pp. 343-356
Author(s):  
Sa'd Shannak ◽  
Malak Alnory

Purpose Solar as an energy source has a massive potential to reduce dependence on fossil fuels in Gulf Countries (GC). One attractive application of solar energy is solar-powered desalination, which is a viable method to produce fresh water. The most significant factor determining the potential deployment of this application is economics. Design/methodology/approach In this study, the classical economic analysis model has been modified to assess the penetration of solar technology to power desalination plants at different periods during the project lifetime. Furthermore, the environmental and financial values were combined to assess the incentive of powering desalination plants with solar energy in Saudi Arabia. Three systems of solar technologies accompanied with water desalination based on technical applicability were modeled and economically analyzed to understand the impact of various design and operation parameters. Findings This study shows that PV-RO is currently more competitive at both market and administrated prices in Saudi Arabia, followed by the MED-CSP system and finally CSP-RO system. CSP-RO system starts to generate positive surplus after 11 years, while the base case shows no positive surplus at all during the entire lifetime. Moreover, the same trend continues to hold with MED-CSP and PV-RO systems. The MED-CSP generates positive surplus after six years and PV-RO after five years only. On average, it takes eight years for a project running based on solar (CAPEX and OPEX) and desalination OPEX to generate positive cash surplus. Originality/value This paper discusses the debate about incentives for renewable energy in GC and the impact of coupling water production and solar generation. Given that there is no analytical framework built earlier, this paper provides an alternative methodology for policy analysis to understand the role of economies of scope to incentivize solar generation. In other words, the authors are investigating options to reduce the total cost of solar production as a result of increasing the number of different goods produced.


Desalination ◽  
1998 ◽  
Vol 115 (1) ◽  
pp. 83-101 ◽  
Author(s):  
N.G. Voros ◽  
C.T. Kiranoudis ◽  
Z.B. Maroulis

1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


1882 ◽  
Vol 13 (333supp) ◽  
pp. 5317-5317
Author(s):  
W. B. Carpenter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document