scholarly journals Partition Eisenstein series and semi-modular forms

2021 ◽  
Vol 7 (4) ◽  
Author(s):  
Matthew Just ◽  
Robert Schneider
2021 ◽  
pp. 1-20
Author(s):  
K. PUSHPA ◽  
K. R. VASUKI

Abstract The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$ , for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).


Author(s):  
Johann Franke

AbstractBased on the new approach to modular forms presented in [6] that uses rational functions, we prove a dominated convergence theorem for certain modular forms in the Eisenstein space. It states that certain rearrangements of the Fourier series will converge very fast near the cusp $$\tau = 0$$ τ = 0 . As an application, we consider L-functions associated to products of Eisenstein series and present natural generalized Dirichlet series representations that converge in an expanded half plane.


Author(s):  
Aaron Pollack

Suppose that $G$ is a simple reductive group over $\mathbf{Q}$ , with an exceptional Dynkin type and with $G(\mathbf{R})$ quaternionic (in the sense of Gross–Wallach). In a previous paper, we gave an explicit form of the Fourier expansion of modular forms on $G$ along the unipotent radical of the Heisenberg parabolic. In this paper, we give the Fourier expansion of the minimal modular form $\unicode[STIX]{x1D703}_{Gan}$ on quaternionic $E_{8}$ and some applications. The $Sym^{8}(V_{2})$ -valued automorphic function $\unicode[STIX]{x1D703}_{Gan}$ is a weight 4, level one modular form on $E_{8}$ , which has been studied by Gan. The applications we give are the construction of special modular forms on quaternionic $E_{7},E_{6}$ and $G_{2}$ . We also discuss a family of degenerate Heisenberg Eisenstein series on the groups $G$ , which may be thought of as an analogue to the quaternionic exceptional groups of the holomorphic Siegel Eisenstein series on the groups $\operatorname{GSp}_{2n}$ .


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Martin Raum ◽  
Jiacheng Xia

Abstract We show that every elliptic modular form of integral weight greater than 1 can be expressed as linear combinations of products of at most two cusp expansions of Eisenstein series. This removes the obstruction of nonvanishing central $$\mathrm{L}$$ L -values present in all previous work. For weights greater than 2, we refine our result further, showing that linear combinations of products of exactly two cusp expansions of Eisenstein series suffice.


1984 ◽  
Vol 95 ◽  
pp. 73-84 ◽  
Author(s):  
Yoshiyuki Kitaoka

We are concerned with Dirichlet series which appear in the Fourier expansion of the non-analytic Eisenstein series on the Siegel upper half space Hm of degree m. In the case of m = 2 Kaufhold [1] evaluated them. Here we treat the general cases by a different method.


2012 ◽  
Vol 55 (2) ◽  
pp. 400-409 ◽  
Author(s):  
Abdellah Sebbar ◽  
Ahmed Sebbar

AbstractThe purpose of this paper is to solve various differential equations having Eisenstein series as coefficients using various tools and techniques. The solutions are given in terms of modular forms, modular functions, and equivariant forms.


2016 ◽  
Vol 12 (03) ◽  
pp. 691-723 ◽  
Author(s):  
Ren-He Su

In 1975, Cohen constructed a kind of one-variable modular forms of half-integral weight, say [Formula: see text], whose [Formula: see text]th Fourier coefficient only occurs when [Formula: see text] is congruent to 0 or 1 modulo 4. The space of modular forms whose Fourier coefficients have the above property is called Kohnen plus space, initially introduced by Kohnen in 1980. Recently, Hiraga and Ikeda generalized the plus space to the spaces for half-integral weight Hilbert modular forms with respect to general totally real number fields. The [Formula: see text]th Fourier coefficients [Formula: see text] of a Hilbert modular form of parallel weight [Formula: see text] lying in the generalized Kohnen plus space does not vanish only if [Formula: see text] is congruent to a square modulo 4. In this paper, we use an adelic way to construct Eisenstein series of parallel half-integral weight belonging to the generalized Kohnen plus spaces and give an explicit form for their Fourier coefficients. These series give a generalization of the one introduced by Cohen. Moreover, we show that the Kohnen plus space is generated by the cusp forms and the Eisenstein series we constructed as a vector space over [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document