THE MINIMAL MODULAR FORM ON QUATERNIONIC

Author(s):  
Aaron Pollack

Suppose that $G$ is a simple reductive group over $\mathbf{Q}$ , with an exceptional Dynkin type and with $G(\mathbf{R})$ quaternionic (in the sense of Gross–Wallach). In a previous paper, we gave an explicit form of the Fourier expansion of modular forms on $G$ along the unipotent radical of the Heisenberg parabolic. In this paper, we give the Fourier expansion of the minimal modular form $\unicode[STIX]{x1D703}_{Gan}$ on quaternionic $E_{8}$ and some applications. The $Sym^{8}(V_{2})$ -valued automorphic function $\unicode[STIX]{x1D703}_{Gan}$ is a weight 4, level one modular form on $E_{8}$ , which has been studied by Gan. The applications we give are the construction of special modular forms on quaternionic $E_{7},E_{6}$ and $G_{2}$ . We also discuss a family of degenerate Heisenberg Eisenstein series on the groups $G$ , which may be thought of as an analogue to the quaternionic exceptional groups of the holomorphic Siegel Eisenstein series on the groups $\operatorname{GSp}_{2n}$ .

2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Martin Raum ◽  
Jiacheng Xia

Abstract We show that every elliptic modular form of integral weight greater than 1 can be expressed as linear combinations of products of at most two cusp expansions of Eisenstein series. This removes the obstruction of nonvanishing central $$\mathrm{L}$$ L -values present in all previous work. For weights greater than 2, we refine our result further, showing that linear combinations of products of exactly two cusp expansions of Eisenstein series suffice.


1984 ◽  
Vol 95 ◽  
pp. 73-84 ◽  
Author(s):  
Yoshiyuki Kitaoka

We are concerned with Dirichlet series which appear in the Fourier expansion of the non-analytic Eisenstein series on the Siegel upper half space Hm of degree m. In the case of m = 2 Kaufhold [1] evaluated them. Here we treat the general cases by a different method.


1979 ◽  
Vol 86 (3) ◽  
pp. 461-466 ◽  
Author(s):  
A. J. Scholl

Let A be a subring of the complex numbers containing 1, and Γ a subgroup of the modular group of finite index. We say that a modular form on Γ is A-integral if the coefficients of its Fourier expansion at infinity lie in A. We denote by Mk(Γ,A) the A-module of holomorphic A-integral modular forms of weight k, and by M(Γ, A) the graded algebra of A-integral modular forms on Γ.


2009 ◽  
Vol 05 (08) ◽  
pp. 1433-1446 ◽  
Author(s):  
AHMAD EL-GUINDY

In this paper, we study the Fourier expansion where the coefficients are given as the evaluation of a sequence of modular forms at a fixed point in the upper half-plane. We show that for prime levels l for which the modular curve X0(l) is hyperelliptic (with hyperelliptic involution of the Atkin–Lehner type) then one can choose a sequence of weight k (any even integer) forms so that the resulting Fourier expansion is itself a meromorphic modular form of weight 2-k. These sequences have many interesting properties, for instance, the sequence of their first nonzero next-to-leading coefficient is equal to the terms in the Fourier expansion of a certain weight 2-k form. The results in the paper generalizes earlier work by Asai, Kaneko, and Ninomiya (for level one), and Ahlgren (for the cases where X0(l) has genus zero).


Author(s):  
Bernhard Heim ◽  
Markus Neuhauser

Hardy and Ramanujan introduced the Circle Method to study the Fourier expansion of certain meromorphic modular forms on the upper complex half-plane. These led to asymptotic results for the partition numbers and proven and unproven formulas for the coefficients of the reciprocals of Eisenstein series [Formula: see text], especially of weight 4. Berndt et al. finally proved them all. Recently, Bringmann and Kane generalized Petersson’s approach via Poincaré series, to handle the general case. We introduce a third approach. We attach recursively defined polynomials to reciprocals of Eisenstein series. This provides easy access to the signs of the Fourier coefficients of reciprocals of Eisenstein series, sheds some light on reciprocals of [Formula: see text] of general weight, and provides some upper and lower bounds for their growth.


1986 ◽  
Vol 102 ◽  
pp. 51-77 ◽  
Author(s):  
Yoshio Tanigawa

In [8], H. Maass introduced the ‘Spezialschar’ which is now called the Maass space. It is defined by the relation of the Fourier coefficients of modular forms as follows. Let f be a Siegel modular form on Sp(2,Z) of weight k, and let be its Fourier expansion, where . Then f belongs to the Maass space if and only if


Author(s):  
Kâzım Büyükboduk ◽  
Antonio Lei

AbstractThis article is a continuation of our previous work [7] on the Iwasawa theory of an elliptic modular form over an imaginary quadratic field $K$, where the modular form in question was assumed to be ordinary at a fixed odd prime $p$. We formulate integral Iwasawa main conjectures at non-ordinary primes $p$ for suitable twists of the base change of a newform $f$ to an imaginary quadratic field $K$ where $p$ splits, over the cyclotomic ${\mathbb{Z}}_p$-extension, the anticyclotomic ${\mathbb{Z}}_p$-extensions (in both the definite and the indefinite cases) as well as the ${\mathbb{Z}}_p^2$-extension of $K$. In order to do so, we define Kobayashi–Sprung-style signed Coleman maps, which we use to introduce doubly signed Selmer groups. In the same spirit, we construct signed (integral) Beilinson–Flach elements (out of the collection of unbounded Beilinson–Flach elements of Loeffler–Zerbes), which we use to define doubly signed $p$-adic $L$-functions. The main conjecture then relates these two sets of objects. Furthermore, we show that the integral Beilinson–Flach elements form a locally restricted Euler system, which in turn allow us to deduce (under certain technical assumptions) one inclusion in each one of the four main conjectures we formulate here (which may be turned into equalities in favorable circumstances).


2018 ◽  
Vol 30 (4) ◽  
pp. 887-913 ◽  
Author(s):  
Kâzım Büyükboduk ◽  
Antonio Lei

Abstract This is the first in a series of articles where we will study the Iwasawa theory of an elliptic modular form f along the anticyclotomic {\mathbb{Z}_{p}} -tower of an imaginary quadratic field K where the prime p splits completely. Our goal in this portion is to prove the Iwasawa main conjecture for suitable twists of f assuming that f is p-ordinary, both in the definite and indefinite setups simultaneously, via an analysis of Beilinson–Flach elements.


2010 ◽  
Vol 06 (01) ◽  
pp. 69-87 ◽  
Author(s):  
ALISON MILLER ◽  
AARON PIXTON

We extend results of Bringmann and Ono that relate certain generalized traces of Maass–Poincaré series to Fourier coefficients of modular forms of half-integral weight. By specializing to cases in which these traces are usual traces of algebraic numbers, we generalize results of Zagier describing arithmetic traces associated to modular forms. We define correspondences [Formula: see text] and [Formula: see text]. We show that if f is a modular form of non-positive weight 2 - 2 λ and odd level N, holomorphic away from the cusp at infinity, then the traces of values at Heegner points of a certain iterated non-holomorphic derivative of f are equal to Fourier coefficients of the half-integral weight modular forms [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document