On the Parametric Approximation Results of Phillips Operators Involving the q-Appell Polynomials

Author(s):  
Md. Nasiruzzaman ◽  
Khursheed J. Ansari ◽  
M. Mursaleen
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
M. Mursaleen ◽  
Md. Nasiruzzaman ◽  
A. Kılıçman ◽  
S. H. Sapar

2004 ◽  
Vol 41 (2) ◽  
pp. 570-578 ◽  
Author(s):  
Zvetan G. Ignatov ◽  
Vladimir K. Kaishev

An explicit formula for the probability of nonruin of an insurance company in a finite time interval is derived, assuming Poisson claim arrivals, any continuous joint distribution of the claim amounts and any nonnegative, increasing real function representing its premium income. The formula is compact and expresses the nonruin probability in terms of Appell polynomials. An example, illustrating its numerical convenience, is also given in the case of inverted Dirichlet-distributed claims and a linearly increasing premium-income function.


2017 ◽  
Vol 116 ◽  
pp. 2-9 ◽  
Author(s):  
Lidia Aceto ◽  
Helmut Robert Malonek ◽  
Graça Tomaz

Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3833-3844 ◽  
Author(s):  
Ghazala Yasmin ◽  
Abdulghani Muhyi

In this article, the Legendre-Gould-Hopper polynomials are combined with Appell sequences to introduce certain mixed type special polynomials by using operational method. The generating functions, determinant definitions and certain other properties of Legendre-Gould-Hopper based Appell polynomials are derived. Operational rules providing connections between these formulae and known special polynomials are established. The 2-variable Hermite Kamp? de F?riet based Bernoulli polynomials are considered as an member of Legendre-Gould-Hopper based Appell family and certain results for this member are also obtained.


2020 ◽  
Vol 12 (1) ◽  
pp. 129-137 ◽  
Author(s):  
L. Bedratyuk ◽  
N. Luno

Let $x^{(n)}$ denotes the Pochhammer symbol (rising factorial) defined by the formulas $x^{(0)}=1$ and $x^{(n)}=x(x+1)(x+2)\cdots (x+n-1)$ for $n\geq 1$. In this paper, we present a new real-valued Appell-type polynomial family $A_n^{(k)}(m,x)$, $n, m \in {\mathbb{N}}_0$, $k \in {\mathbb{N}},$ every member of which is expressed by mean of the generalized hypergeometric function ${}_{p} F_q \begin{bmatrix} \begin{matrix} a_1, a_2, \ldots, a_p \:\\ b_1, b_2, \ldots, b_q \end{matrix} \: \Bigg| \:z \end{bmatrix}= \sum\limits_{k=0}^{\infty} \frac{a_1^{(k)} a_2^{(k)} \ldots a_p^{(k)}}{b_1^{(k)} b_2^{(k)} \ldots b_q^{(k)}} \frac{z^k}{k!}$ as follows $$ A_n^{(k)}(m,x)= x^n{}_{k+p} F_q \begin{bmatrix} \begin{matrix} {a_1}, {a_2}, {\ldots}, {a_p}, {\displaystyle -\frac{n}{k}}, {\displaystyle -\frac{n-1}{k}}, {\ldots}, {\displaystyle-\frac{n-k+1}{k}}\:\\ {b_1}, {b_2}, {\ldots}, {b_q} \end{matrix} \: \Bigg| \: \displaystyle \frac{m}{x^k} \end{bmatrix} $$ and, at the same time, the polynomials from this family are Appell-type polynomials. The generating exponential function of this type of polynomials is firstly discovered and the proof that they are of Appell-type ones is given. We present the differential operator formal power series representation as well as an explicit formula over the standard basis, and establish a new identity for the generalized hypergeometric function. Besides, we derive the addition, the multiplication and some other formulas for this polynomial family.


Sign in / Sign up

Export Citation Format

Share Document