scholarly journals Some properties of generalized hypergeometric Appell polynomials

2020 ◽  
Vol 12 (1) ◽  
pp. 129-137 ◽  
Author(s):  
L. Bedratyuk ◽  
N. Luno

Let $x^{(n)}$ denotes the Pochhammer symbol (rising factorial) defined by the formulas $x^{(0)}=1$ and $x^{(n)}=x(x+1)(x+2)\cdots (x+n-1)$ for $n\geq 1$. In this paper, we present a new real-valued Appell-type polynomial family $A_n^{(k)}(m,x)$, $n, m \in {\mathbb{N}}_0$, $k \in {\mathbb{N}},$ every member of which is expressed by mean of the generalized hypergeometric function ${}_{p} F_q \begin{bmatrix} \begin{matrix} a_1, a_2, \ldots, a_p \:\\ b_1, b_2, \ldots, b_q \end{matrix} \: \Bigg| \:z \end{bmatrix}= \sum\limits_{k=0}^{\infty} \frac{a_1^{(k)} a_2^{(k)} \ldots a_p^{(k)}}{b_1^{(k)} b_2^{(k)} \ldots b_q^{(k)}} \frac{z^k}{k!}$ as follows $$ A_n^{(k)}(m,x)= x^n{}_{k+p} F_q \begin{bmatrix} \begin{matrix} {a_1}, {a_2}, {\ldots}, {a_p}, {\displaystyle -\frac{n}{k}}, {\displaystyle -\frac{n-1}{k}}, {\ldots}, {\displaystyle-\frac{n-k+1}{k}}\:\\ {b_1}, {b_2}, {\ldots}, {b_q} \end{matrix} \: \Bigg| \: \displaystyle \frac{m}{x^k} \end{bmatrix} $$ and, at the same time, the polynomials from this family are Appell-type polynomials. The generating exponential function of this type of polynomials is firstly discovered and the proof that they are of Appell-type ones is given. We present the differential operator formal power series representation as well as an explicit formula over the standard basis, and establish a new identity for the generalized hypergeometric function. Besides, we derive the addition, the multiplication and some other formulas for this polynomial family.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
T. A. Ishkhanyan ◽  
T. A. Shahverdyan ◽  
A. M. Ishkhanyan

We examine the expansions of the solutions of the general Heun equation in terms of the Gauss hypergeometric functions. We present several expansions using functions, the forms of which differ from those applied before. In general, the coefficients of the expansions obey three-term recurrence relations. However, there exist certain choices of the parameters for which the recurrence relations become two-term. The coefficients of the expansions are then explicitly expressed in terms of the gamma functions. Discussing the termination of the presented series, we show that the finite-sum solutions of the general Heun equation in terms of generally irreducible hypergeometric functions have a representation through a single generalized hypergeometric function. Consequently, the power-series expansion of the Heun function for any such case is governed by a two-term recurrence relation.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650064 ◽  
Author(s):  
Vivek Sahai ◽  
Ashish Verma

The main object of this paper is to present a generalization of the Pochhammer symbol. We present some contiguous relations of this generalized Pochhammer symbol and use it to give an extension of the generalized hypergeometric function [Formula: see text]. Finally, we present some properties and generating functions of this extended generalized hypergeometric function.


2020 ◽  
Vol 27 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Junesang Choi ◽  
Rakesh K. Parmar ◽  
Purnima Chopra

AbstractMotivated mainly by certain interesting recent extensions of the generalized hypergeometric function [H. M. Srivastava, A. Çetinkaya and I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 2014, 484–491] by means of the generalized Pochhammer symbol, we introduce here a new extension of the generalized Mittag-Leffler function. We then systematically investigate several properties of the extended Mittag-Leffler function including some basic properties, Mellin, Euler-Beta, Laplace and Whittaker transforms. Furthermore, certain properties of the Riemann–Liouville fractional integrals and derivatives associated with the extended Mittag-Leffler function are also investigated. Some interesting special cases of our main results are pointed out.


1999 ◽  
Vol 08 (08) ◽  
pp. 1049-1063 ◽  
Author(s):  
RUTH J. LAWRENCE

By analysing Ohtsuki's original work in which he produced a formal power series invariant of rational homology 3-spheres, we obtain a simplified explicit formula for them, which may also be compared with Rozansky's integral expression. We further show their relation to the exact SO(3) Witten-Reshetikhin-Turaev invariants at roots of unity in a stronger form than that given in Ohtsuki's original work.


2001 ◽  
Vol 44 (3) ◽  
pp. 282-291 ◽  
Author(s):  
Min Ho Lee ◽  
Hyo Chul Myung

AbstractJacobi-like forms for a discrete subgroup are formal power series with coefficients in the space of functions on the Poincaré upper half plane satisfying a certain functional equation, and they correspond to sequences of certain modular forms. We introduce Hecke operators acting on the space of Jacobi-like forms and obtain an explicit formula for such an action in terms of modular forms. We also prove that those Hecke operator actions on Jacobi-like forms are compatible with the usual Hecke operator actions on modular forms.


1969 ◽  
Vol 65 (3) ◽  
pp. 591-595 ◽  
Author(s):  
G. E. Barr

Let the generalized hypergeometric function of one variable be denoted bywhere (a)m is the Pochhammer symbol ((1, 3)).


Author(s):  
J.-P. Bezivin ◽  
P. Robba

AbstractLet L be a linear differential operator with rational coefficients such that 0 is not an irregular singularity of L and that for sufficiently many p's the equation Lv = 0 has no zero solution mod p. We show that if u is a formal power series whose coefficients are p-adic integers for almost all p and if Lu is rational, then u too is rational.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Gauhar Rahman ◽  
Abdus Saboor ◽  
Zunaira Anjum ◽  
Kottakkaran Sooppy Nisar ◽  
Thabet Abdeljawad

Inspired by certain fascinating ongoing extensions of the special functions such as an extension of the Pochhammer symbol and generalized hypergeometric function, we present a new extension of the generalized Mittag-Leffler (ML) function εa,b;p,vκz1 in terms of the generalized Pochhammer symbol. We then deliberately find certain various properties and integral transformations of the said function εa,b;p,vκz1. Some particular cases and outcomes of the main results are also established.


Author(s):  
P. L. Ivankov

In this paper we investigate arithmetic nature of the values of generalized hypergeometric functions and their derivatives. To solve the problem one often makes use of Siegel’s method. The first step in corresponding reasoning is, using the pigeonhole principle, to construct a functional linear approximating form, which has high order of zero at the origin of the coordinates.A hypergeometric function is defined as a sum of a power series whose coefficients are the products of the values of some rational function. Taken with the opposite sign, the zeroes of a numerator and a denominator of this rational function are called parameters of the corresponding generalized hypergeometric function. If the parameters are irrational it is impossible, as a rule, to employ Siegel’s method. In this case one applies the method based on the effective construction of the linear approximating form.Additional difficulties arise in case the rational function numerator involved in the formation of the coefficients of the hypergeometric function under consideration is different from the identical unit. In this situation even the availability of the effective construction of approximating form does not enable achieving an arithmetic result yet. In this paper we consider just such a case. To overcome difficulties arisen here we consider the values of the corresponding hypergeometric function and its derivatives at small points only and impose additional restrictions on parameters of the function.


Sign in / Sign up

Export Citation Format

Share Document