An Optimization-Based Energy Management Strategy for PEM Fuel Cell-Battery Hybrid Energy System for Locomotive Applications

Author(s):  
Upasana Sarma ◽  
Sanjib Ganguly
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Armin Letafat ◽  
Mehdi Rafiei ◽  
Masoud Ardeshiri ◽  
Morteza Sheikh ◽  
Mohsen Banaei ◽  
...  

Today’s remarkable challenge of maritime transportation industry is the detrimental contamination generation from fossil fuels. To tackle such a challenge and reduce the contribution into air pollution, different power solutions have been considered; among others, hybrid energy-based solutions are powering many ferry boats. This paper introduces an energy management strategy (EMS) for a hybrid energy system (HES) of a ferry boat with the goal to optimize the performance and reduce the operation cost. HES considered for the ferry boat consists of different devices such as proton exchange membrane fuel cell (PEMFC), LI-ION battery bank, and cold ironing (CI). PEMFC systems are appropriate to employ as they are not polluting. The battery bank compensates for the abrupt variations of the load as the fuel cell has a slow dynamic against sudden changes of the load. Also, CI systems can improve the reduction of the expenses of energy management, during hours where the ferry boat is located at the harbor. To study the performance, cost and the pollution contribution CO2, NOX, SOX of the proposed hybrid energy management strategy (HEMS), we compare it against three various types of HEM from the state-of-the-art and also available rule-based methods in the literature. The analysis results show a high applicability of the proposed HES. All results in this paper have been obtained in the MATLAB software environment.


2021 ◽  
Vol 11 (10) ◽  
pp. 4601
Author(s):  
Muhammad Paend Bakht ◽  
Zainal Salam ◽  
Abdul Rauf Bhatti ◽  
Waqas Anjum ◽  
Saifulnizam A. Khalid ◽  
...  

This study investigates the potential application of Stateflow (SF) to design an energy management strategy (EMS) for a renewable-based hybrid energy system (HES). The SF is an extended finite state machine; it provides a platform to design, model, and execute complex event-driven systems using an interactive graphical environment. The HES comprises photovoltaics (PV), energy storage units (ESU) and a diesel generator (Gen), integrated with the power grid that experiences a regular load shedding condition (scheduled power outages). The EMS optimizes the energy production and utilization during both modes of HES operation, i.e., grid-connected mode and the islanded mode. For islanded operation mode, a resilient power delivery is ensured when the system is subjected to intermittent renewable supply and grid vulnerability. The contributions of this paper are twofold: first is to propose an integrated framework of HES to address the problem of load shedding, and second is to design and implement a resilient EMS in the SF environment. The validation of the proposed EMS demonstrates its feasibility to serve the load for various operating scenarios. The latter include operations under seasonal variation, abnormal weather conditions, and different load shedding patterns. The simulation results reveal that the proposed EMS not only ensures uninterrupted power supply during load shedding but also reduces grid burden by maximizing the use of PV energy. In addition, the SF-based adopted methodology is envisaged to be a useful alternative to the popular design method using the conventional software tools, particularly for event-driven systems.


Sign in / Sign up

Export Citation Format

Share Document