scholarly journals Pseudo-Riemannian geometry encodes information geometry in optimal transport

Author(s):  
Ting-Kam Leonard Wong ◽  
Jiaowen Yang

AbstractOptimal transport and information geometry both study geometric structures on spaces of probability distributions. Optimal transport characterizes the cost-minimizing movement from one distribution to another, while information geometry originates from coordinate invariant properties of statistical inference. Their relations and applications in statistics and machine learning have started to gain more attention. In this paper we give a new differential-geometric relation between the two fields. Namely, the pseudo-Riemannian framework of Kim and McCann, which provides a geometric perspective on the fundamental Ma–Trudinger–Wang (MTW) condition in the regularity theory of optimal transport maps, encodes the dualistic structure of statistical manifold. This general relation is described using the framework of c-divergence under which divergences are defined by optimal transport maps. As a by-product, we obtain a new information-geometric interpretation of the MTW tensor on the graph of the transport map. This relation sheds light on old and new aspects of information geometry. The dually flat geometry of Bregman divergence corresponds to the quadratic cost and the pseudo-Euclidean space, and the logarithmic $$L^{(\alpha )}$$ L ( α ) -divergence introduced by Pal and the first author has constant sectional curvature in a sense to be made precise. In these cases we give a geometric interpretation of the information-geometric curvature in terms of the divergence between a primal-dual pair of geodesics.

2010 ◽  
Vol 58 (1) ◽  
pp. 183-195 ◽  
Author(s):  
S. Amari ◽  
A. Cichocki

Information geometry of divergence functionsMeasures of divergence between two points play a key role in many engineering problems. One such measure is a distance function, but there are many important measures which do not satisfy the properties of the distance. The Bregman divergence, Kullback-Leibler divergence andf-divergence are such measures. In the present article, we study the differential-geometrical structure of a manifold induced by a divergence function. It consists of a Riemannian metric, and a pair of dually coupled affine connections, which are studied in information geometry. The class of Bregman divergences are characterized by a dually flat structure, which is originated from the Legendre duality. A dually flat space admits a generalized Pythagorean theorem. The class off-divergences, defined on a manifold of probability distributions, is characterized by information monotonicity, and the Kullback-Leibler divergence belongs to the intersection of both classes. Thef-divergence always gives the α-geometry, which consists of the Fisher information metric and a dual pair of ±α-connections. The α-divergence is a special class off-divergences. This is unique, sitting at the intersection of thef-divergence and Bregman divergence classes in a manifold of positive measures. The geometry derived from the Tsallisq-entropy and related divergences are also addressed.


2019 ◽  
Vol 31 (5) ◽  
pp. 827-848 ◽  
Author(s):  
Shun-ichi Amari ◽  
Ryo Karakida ◽  
Masafumi Oizumi ◽  
Marco Cuturi

We propose a new divergence on the manifold of probability distributions, building on the entropic regularization of optimal transportation problems. As Cuturi ( 2013 ) showed, regularizing the optimal transport problem with an entropic term is known to bring several computational benefits. However, because of that regularization, the resulting approximation of the optimal transport cost does not define a proper distance or divergence between probability distributions. We recently tried to introduce a family of divergences connecting the Wasserstein distance and the Kullback-Leibler divergence from an information geometry point of view (see Amari, Karakida, & Oizumi, 2018 ). However, that proposal was not able to retain key intuitive aspects of the Wasserstein geometry, such as translation invariance, which plays a key role when used in the more general problem of computing optimal transport barycenters. The divergence we propose in this work is able to retain such properties and admits an intuitive interpretation.


2015 ◽  
Vol 07 (02) ◽  
pp. 239-260 ◽  
Author(s):  
Otis Chodosh ◽  
Vishesh Jain ◽  
Michael Lindsey ◽  
Lyuboslav Panchev ◽  
Yanir A. Rubinstein

Consider two bounded domains Ω and Λ in ℝ2, and two sufficiently regular probability measures μ and ν supported on them. By Brenier's theorem, there exists a unique transportation map T satisfying T#μ = ν and minimizing the quadratic cost ∫ℝn ∣T(x) - x∣2 dμ(x). Furthermore, by Caffarelli's regularity theory for the real Monge–Ampère equation, if Λ is convex, T is continuous. We study the reverse problem, namely, when is T discontinuous if Λ fails to be convex? We prove a result guaranteeing the discontinuity of T in terms of the geometries of Λ and Ω in the two-dimensional case. The main idea is to use tools of convex analysis and the extrinsic geometry of ∂Λ to distinguish between Brenier and Alexandrov weak solutions of the Monge–Ampère equation. We also use this approach to give a new proof of a result due to Wolfson and Urbas. We conclude by revisiting an example of Caffarelli, giving a detailed study of a discontinuous map between two explicit domains, and determining precisely where the discontinuities occur.


2021 ◽  
Vol 381 ◽  
pp. 107603
Author(s):  
Tatsuya Miura ◽  
Felix Otto

2013 ◽  
Vol 15 (4) ◽  
pp. 1131-1166 ◽  
Author(s):  
Alessio Figalli ◽  
Young-Heon Kim ◽  
Robert McCann

2021 ◽  
Author(s):  
Jacob Atticus Armstrong Goodall

Abstract A duality theorem is stated and proved for a minimax vector optimization problem where the vectors are elements of the set of products of compact Polish spaces. A special case of this theorem is derived to show that two metrics on the space of probability distributions on countable products of Polish spaces are identical. The appendix includes a proof that, under the appropriate conditions, the function studied in the optimisation problem is indeed a metric. The optimisation problem is comparable to multi-commodity optimal transport where there is dependence between commodities. This paper builds on the work of R.S. MacKay who introduced the metrics in the context of complexity science in [4] and [5]. The metrics have the advantage of measuring distance uniformly over the whole network while other metrics on probability distributions fail to do so (e.g total variation, Kullback–Leibler divergence, see [5]). This opens up the potential of mathematical optimisation in the setting of complexity science.


2020 ◽  
Vol 52 (1) ◽  
pp. 61-101
Author(s):  
Daniel Lacker

AbstractThis work is devoted to a vast extension of Sanov’s theorem, in Laplace principle form, based on alternatives to the classical convex dual pair of relative entropy and cumulant generating functional. The abstract results give rise to a number of probabilistic limit theorems and asymptotics. For instance, widely applicable non-exponential large deviation upper bounds are derived for empirical distributions and averages of independent and identically distributed samples under minimal integrability assumptions, notably accommodating heavy-tailed distributions. Other interesting manifestations of the abstract results include new results on the rate of convergence of empirical measures in Wasserstein distance, uniform large deviation bounds, and variational problems involving optimal transport costs, as well as an application to error estimates for approximate solutions of stochastic optimization problems. The proofs build on the Dupuis–Ellis weak convergence approach to large deviations as well as the duality theory for convex risk measures.


2021 ◽  
Vol 170 ◽  
pp. 108989
Author(s):  
N. Ghaffari ◽  
S.G. Walker

2015 ◽  
Vol 10 (4) ◽  
pp. 715-732
Author(s):  
Shizan Fang ◽  
Vincent Nolot

Sign in / Sign up

Export Citation Format

Share Document