information metric
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 32)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ku Vit
Keyword(s):  

Bound information metric fisher


2021 ◽  
Author(s):  
Ku Vit
Keyword(s):  

Information metric and world surface


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2158
Author(s):  
Xin Zhang ◽  
Jiwei Qin ◽  
Jiong Zheng

For personalized recommender systems, matrix factorization and its variants have become mainstream in collaborative filtering. However, the dot product in matrix factorization does not satisfy the triangle inequality and therefore fails to capture fine-grained information. Metric learning-based models have been shown to be better at capturing fine-grained information than matrix factorization. Nevertheless, most of these models only focus on rating data and social information, which are not sufficient for dealing with the challenges of data sparsity. In this paper, we propose a metric learning-based social recommendation model called SRMC. SRMC exploits users’ co-occurrence patterns to discover their potentially similar or dissimilar users with symmetric relationships and change their relative positions to achieve better recommendations. Experiments on three public datasets show that our model is more effective than the compared models.


Author(s):  
Xiao-Kan Guo

In this paper, we study the construction of classical geometry from the quantum entanglement structure by using information geometry. In the information geometry of classical spacetime, the Fisher information metric is related to a blurred metric of a classical physical space. We first show that a local information metric can be obtained from the entanglement contour in a local subregion. This local information metric measures the fine structure of entanglement spectra inside the subregion, which suggests a quantum origin of the information-geometric blurred space. We study both the continuous and the classical limits of the quantum-originated blurred space by using the techniques from the statistical sampling algorithms, the sampling theory of spacetime and the projective limit. A scheme for going from a blurred space with quantum features to a classical geometry is also explored.


2021 ◽  
Vol 136 (11) ◽  
Author(s):  
H. Dimov ◽  
I. N. Iliev ◽  
M. Radomirov ◽  
R. C. Rashkov ◽  
T. Vetsov

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1436
Author(s):  
John C. Baez

Suppose we have n different types of self-replicating entity, with the population Pi of the ith type changing at a rate equal to Pi times the fitness fi of that type. Suppose the fitness fi is any continuous function of all the populations P1,⋯,Pn. Let pi be the fraction of replicators that are of the ith type. Then p=(p1,⋯,pn) is a time-dependent probability distribution, and we prove that its speed as measured by the Fisher information metric equals the variance in fitness. In rough terms, this says that the speed at which information is updated through natural selection equals the variance in fitness. This result can be seen as a modified version of Fisher’s fundamental theorem of natural selection. We compare it to Fisher’s original result as interpreted by Price, Ewens and Edwards.


Author(s):  
Xin Zhang ◽  
Jiwei Qin ◽  
Jiong Zheng

For personalized recommender systems,matrix factorization and its variants have become mainstream in collaborative filtering.However,the dot product in matrix factorization does not satisfy the triangle inequality and therefore fails to capture fine-grained information. Metric learning-based models have been shown to be better at capturing fine-grained information than matrix factorization. Nevertheless,most of these models only focus on rating data and social information, which are not sufficient for dealing with the challenges of data sparsity. In this paper,we propose a metric learning-based social recommendation model called SRMC.SRMC exploits users' co-occurrence pattern to discover their potentially similar or dissimilar users with symmetric relationships and change their relative positions to achieve better recommendations.Experiments on three public datasets show that our model is more effective than the compared models.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 853
Author(s):  
Philipp Frank ◽  
Reimar Leike ◽  
Torsten A. Enßlin

Efficiently accessing the information contained in non-linear and high dimensional probability distributions remains a core challenge in modern statistics. Traditionally, estimators that go beyond point estimates are either categorized as Variational Inference (VI) or Markov-Chain Monte-Carlo (MCMC) techniques. While MCMC methods that utilize the geometric properties of continuous probability distributions to increase their efficiency have been proposed, VI methods rarely use the geometry. This work aims to fill this gap and proposes geometric Variational Inference (geoVI), a method based on Riemannian geometry and the Fisher information metric. It is used to construct a coordinate transformation that relates the Riemannian manifold associated with the metric to Euclidean space. The distribution, expressed in the coordinate system induced by the transformation, takes a particularly simple form that allows for an accurate variational approximation by a normal distribution. Furthermore, the algorithmic structure allows for an efficient implementation of geoVI which is demonstrated on multiple examples, ranging from low-dimensional illustrative ones to non-linear, hierarchical Bayesian inverse problems in thousands of dimensions.


Author(s):  
Md Raf E Ul Shougat ◽  
XiaoFu Li ◽  
Tushar Mollik ◽  
Edmon Perkins

Abstract Typically, nonlinearity is considered to be problematic and sometimes can lead to dire consequences. However, the nonlinearity in a Duffing oscillator array can enhance its ability to be used as a reservoir computer. Machine learning and artificial neural networks, inspired from the biological computing framework, have shown their immense potential, especially in real-time temporal data processing. Here, the efficacy of a Duffing oscillator array is explored as a reservoir computer by using information theory. To do this, a reservoir computer model is studied numerically, which exploits the dynamics of the array. In this system, the complex dynamics stem from the Duffing term in each of the identical oscillators. The effects of various system parameters of the array on the information processing ability is discussed from the perspective of information theory. By varying these parameters, the information metric was found to be topologically mixed. Additionally, the importance of asynchrony in the oscillator array is also discussed in terms of the information metric. Since such nonlinear oscillators are used to model many different physical systems, this research provides insight into how physical nonlinear oscillatory systems can be used for dynamic computation, without significantly modifying or controlling the underlying dynamical system. To the authors' knowledge, this is the first use of Shannon's information rate for quantifying a reservoir computer of this kind, as well as the first comparison between synchronization phenomena and the computing ability of a reservoir.


Sign in / Sign up

Export Citation Format

Share Document