Abstract
Conflicting evidence and fuzzy evidence have a significant impact on the results of evidence combination in the application of evidence theory. However, the existing weight assignment methods can hardly reflect the significant influence of fuzzy evidence on the combination results. Therefore, a new method for assigning evidence weights and the corresponding combination rule are proposed. The proposed weight assignment method strengthens the consideration of fuzzy evidence and introduces the Wasserstein distance to compute the clarity degree of evidence which is an important reference index for weight assignment in the proposed combination rule and can weaken the effect of ambiguous evidence effectively. In the experiments, it's firstly verified that the impact of fuzzy evidence on the combination results is significant; therefore it should be fully considered in the weight assignment process. Then, the proposed combination rule with new weight assignment method is tested on a set of numerical arithmetic and Iris datasets. Compared with four existing methods, the results show that the proposed method has higher decision accuracy, F1 score, better computational convergence, and more reliable fusion results as well.