scholarly journals Modelling Pasty Material Behaviour Using the Discrete Element Method

Author(s):  
Felix Platzer ◽  
Eric Fimbinger

AbstractMixtures of a fine-grained dry solid and a liquid, with a higher solid content in the mixture, show paste-like behaviour. In many technical processes, pasty materials are handled in large quantities. Pasty Materials show the same characteristics as Bingham Plastics, behaving like a rigid body but flowing like a viscous fluid under a certain stress level. This behaviour is due to attracting forces between the particles, resulting from the capillary pressure and the surface tension of the liquid, which forms individual capillary bridges or capillary bridge clusters between the solid particles. The behaviour of granular material can be represented in a discrete element method (DEM) simulation. The calibration of the simulation parameters is achieved by comparing laboratory tests, which reflect a typical material characteristic, with the results of calibration simulations. In this project, several DEM contact models, describing attractive forces between particles depending on the distance between them, were analysed and assessed based on their ability to display the pasty material behaviour of a fine-grained solid water mixture with a high water content by comparing the simulation results to a slump test. The most promising contact model was then optimised to enable a minimal computing time for the simulation of bigger technical processes. Many existing contact models also consider attractive forces between particles (e.g. JKR cohesion) but are based on different physical effects. For this reason, the contact models assessed in the course of this project are, in general, based on the capillary effect.

2010 ◽  
Vol 34-35 ◽  
pp. 1383-1387
Author(s):  
Hui Chun Peng ◽  
Qing He

In this paper, the contact models of particle system of coal stream are analyzed; the granule mechanic models of coal stream in different imposed conditions are summarized. Using 3d-discrete element method, a particle mechanic model of clumps is constructed by the contact bonding model to simulate the cataclasm phenomena during the coal conveying of Coal-fired power plant, which plays an important role in assuring the fidelity and integrality of 3D virtual coal conveying scene.


2010 ◽  
Author(s):  
Ivan Iordanoff ◽  
Daniel Iliescu ◽  
Jean Luc Charles ◽  
Jérome Néauport ◽  
F. Barlat ◽  
...  

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 60
Author(s):  
Filippo Marchelli ◽  
Renzo Di Felice

Friction phenomena play a key role in discrete element method (DEM) modeling. To analyze this aspect, we employed the open-source program MFiX to perform DEM simulations of cylindrical vertical columns filled with solid particles. These are still associated with and described by the pioneering model by the German engineer H.A. Janssen. By adapting the program’s code, we were able to gather numerous insights on the stress distribution within the solids. The column was filled with different amounts of solids and, after the system had stabilized, we assessed the pressure in the vertical and radial directions and the distribution of the friction force for all particles. An analysis of the bottom pressure for varying particle loads allowed us to infer that the program can correctly predict the expected asymptotical behavior. After a detailed assessment of the behavior of a single system, we performed a sensitivity analysis taking into account several of the variables employed in the simulations. The friction coefficient and filling rate seem to affect the final behavior the most. The program appears suitable to describe friction phenomena in such a static system.


2021 ◽  
Author(s):  
Seyed-Meysam Seyed-Alian

Discrete element method (DEM) was employed to characterize the mixing of the solid particles in two different types of the powder blenders. In the first part of this study, DEM was used to investigate the effects of initial loading, drum speed, fill level, and agitator speed on the mixing efficiency of a slant cone mixer. DEM simulation results were in good agreement with the experimentally determined data, both qualitatively and quantitatively. In the second part of this study, DEM was employed to characterize the mixing of the solid particles in a Ploughshare mixer. To validate the model, the simulation results were compared to the positron emission particle tracking (PEPT) data reported in the literature. The validated DEM was then utilized to calculate the mixing index as a function of the initial loading, plough rotational speed, fill level, and particle size for a ploughshare mixer.


2021 ◽  
Author(s):  
Seyed-Meysam Seyed-Alian

Discrete element method (DEM) was employed to characterize the mixing of the solid particles in two different types of the powder blenders. In the first part of this study, DEM was used to investigate the effects of initial loading, drum speed, fill level, and agitator speed on the mixing efficiency of a slant cone mixer. DEM simulation results were in good agreement with the experimentally determined data, both qualitatively and quantitatively. In the second part of this study, DEM was employed to characterize the mixing of the solid particles in a Ploughshare mixer. To validate the model, the simulation results were compared to the positron emission particle tracking (PEPT) data reported in the literature. The validated DEM was then utilized to calculate the mixing index as a function of the initial loading, plough rotational speed, fill level, and particle size for a ploughshare mixer.


Sign in / Sign up

Export Citation Format

Share Document