contact models
Recently Published Documents


TOTAL DOCUMENTS

333
(FIVE YEARS 90)

H-INDEX

28
(FIVE YEARS 5)

2021 ◽  
pp. 1-29
Author(s):  
Ali Yalpanian ◽  
Raynald Guilbault

Abstract This study allows contact models based on semi-analytical methods including the impacts of thermoelastic deformations in contacts of finite dimension bodies. The proposed method controls heat flows crossing free boundaries. A comparison with FEA reveals that the proposed method can reduce the calculation times by more than 98%. The paper introduces the thermoelasticity effects into thermal-elastohydrodynamic lubrication (TEHL) modeling of line contact problems. The analysis reveals that including thermoelastic deformations changes the pressure profile and tends to localize the pressure close to the distribution center. Compared to TEHL simulations, the examined configurations caused an overall increase in the maximum pressure by about 9%, an overall film thickness reduction of about 7%, and an overall temperature increase of about 2 K.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Zheng Li ◽  
Hui Zhao ◽  
Shuai Che ◽  
Xuetong Chen ◽  
Hexu Sun

The pre-pressure device of the ultrasonic motor plays a vital role in the design of the entire motor structure, the contact state of the stator and rotor of the motor, dynamic properties of the stator, friction and wear characteristics of the rotor; even the mechanical behaviors of the entire electric machinery have a profound impact. Appropriate pre-pressure is conducive to the smooth operation of the ultrasonic motor, so that the output performance remains excellent, reducing wear and effectively extend the service life of the motor. Therefore, the research on pre-stress is of great significance, as it can better optimize the structure of the three-stator ultrasonic motor and lay the foundation for the stable operation of the motor. First, this paper introduces the construction of the motor as a whole and the pre-pressure device briefly described the working mechanism of the motor, and then introduces the influence of the pre-pressure on the stator and rotor contact models, the position of the constant velocity point, and the modal frequency. Finally, the motor output under different pre-pressures is discussed. The performance experiment has determined the optimal pre-pressure interval, which provides help for its subsequent optimization.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Xizhong Chen ◽  
Di Peng ◽  
John P. Morrissey ◽  
Jin Y. Ooi

AbstractBonded contact models have been increasingly used in the discrete element method (DEM) to study cemented and sintered particulate materials in recent years. Several popular DEM bond models have been proposed in the literature; thus it is beneficial to assess the similarities and differences between the different bond models before they are used in simulations. This paper identifies and discusses two fundamental types of bond models: the Spring Bond Model where two bonded particles are joined by a set of uniform elastic springs on the bond’s cross-section, and the Beam Bond Model in which a beam is used to connect the centres of two particles. A series of cantilever beam bending simulation cases were carried out to verify the findings and assess the strength and weakness of the bond models. Despite the numerous bond models described in the literature, they can all be considered as a variation of these two fundamental model types. The comparative evaluation in this paper also shows that all the bond models investigated can be unified to a general form given at a predefined contact point location.


2021 ◽  
pp. 412-420
Author(s):  
Maria Cristina Valigi ◽  
Silvia Logozzo ◽  
Claudio Braccesi
Keyword(s):  

2021 ◽  
pp. 107329
Author(s):  
Michael Maier ◽  
Michael Pusterhofer ◽  
Florian Summer ◽  
Florian Grün

2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110549
Author(s):  
Tieneng Guo ◽  
Xu Hua ◽  
Zhijie Yan ◽  
Lingjun Meng ◽  
Liwei Peng

Based on Hertz contact theory, two parabolic cylinder normal contact models are established. The effect of contact angle on normal approach, actual contact area, and normal contact stiffness are investigated, and the effect of the distance from the focus to the directrix (focus distance) on the mechanical characteristics of the models is further analyzed. The parabolic cylinder contact model was verified by simulation analysis and comparison with cylinder contact model. The results demonstrated that the contact angle, focal distance, and load have significant effects on the mechanical properties of the model. The simulation data are basically consistent with the contact model data, and the parabolic cylinder contact model and cylinder contact model have the same change trend. The results verify the correctness of the parabolic cylinder contact model and reveal the variation of the mechanical properties of the contact model.


2021 ◽  
Author(s):  
Jinsu Nam ◽  
Jaehee Lyu ◽  
Junyoung Park

Abstract There are computation time constraints caused by the number and size of particles in the powder packing simulation using DEM. In this paper, newly suggested packing model transforms a general packing sequence –particle generation, stack, and compression – into particle generation and packing by growing particles. To verify the new packing model, it was compared using three contact models widely used in DEM, in terms of Radial Distribution Function, porosity, and Coordination Number. As a result, contact between particles showed a similar trend, and the pore distribution was also similar. Using the new packing model can reduce simulation time by 400% compared to the normal packing model without any other coarse graining methods. This model has only been applied to particle packing simulations in this paper, but it can be expanded to other simulations with complex domain based on DEM.


Sign in / Sign up

Export Citation Format

Share Document