An Analysis of Software Bug Reports Using Machine Learning Techniques

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Ha Manh Tran ◽  
Son Thanh Le ◽  
Sinh Van Nguyen ◽  
Phong Thanh Ho
2012 ◽  
Vol 4 (2) ◽  
pp. 32-59 ◽  
Author(s):  
K. K. Chaturvedi ◽  
V.B. Singh

Bug severity is the degree of impact that a defect has on the development or operation of a component or system, and can be classified into different levels based on their impact on the system. Identification of severity level can be useful for bug triager in allocating the bug to the concerned bug fixer. Various researchers have attempted text mining techniques in predicting the severity of bugs, detection of duplicate bug reports and assignment of bugs to suitable fixer for its fix. In this paper, an attempt has been made to compare the performance of different machine learning techniques namely Support vector machine (SVM), probability based Naïve Bayes (NB), Decision Tree based J48 (A Java implementation of C4.5), rule based Repeated Incremental Pruning to Produce Error Reduction (RIPPER) and Random Forests (RF) learners in predicting the severity level (1 to 5) of a reported bug by analyzing the summary or short description of the bug reports. The bug report data has been taken from NASA’s PITS (Projects and Issue Tracking System) datasets as closed source and components of Eclipse, Mozilla & GNOME datasets as open source projects. The analysis has been carried out in RapidMiner and STATISTICA data mining tools. The authors measured the performance of different machine learning techniques by considering (i) the value of accuracy and F-Measure for all severity level and (ii) number of best cases at different threshold level of accuracy and F-Measure.


Author(s):  
Yuan Zhao ◽  
Tieke He ◽  
Zhenyu Chen

It is typically a manual, time-consuming, and tedious task of assigning bug reports to individual developers. Although some machine learning techniques are adopted to alleviate this dilemma, they are mainly focused on the open source projects, which use traditional repositories such as Bugzilla to manage their bug reports. With the boom of the mobile Internet, some new requirements and methods of software testing are emerging, especially the crowdsourced testing. Unlike the traditional channels, whose bug reports are often heavyweight, which means their bug reports are standardized with detailed attribute localization, bug reports tend to be lightweight in the context of crowdsourced testing. To exploit the differences of the bug reports assignment in the new settings, a unified bug reports assignment framework is proposed in this paper. This framework is capable of handling both the traditional heavyweight bug reports and the lightweight ones by (i) first preprocessing the bug reports and feature selections, (ii) then tuning the parameters that indicate the ratios of choosing different methods to vectorize bug reports, (iii) and finally applying classification algorithms to assign bug reports. Extensive experiments are conducted on three datasets to evaluate the proposed framework. The results indicate the applicability of the proposed framework, and also reveal the differences of bug report assignment between traditional repositories and crowdsourced ones.


Author(s):  
Sundos Abdulameer Alazawi ◽  
Mohammed Najim Al-Salam

<span>For assessment of system dependability, fault injection techniques are used to expedite the presence of an error or failure in the system, which helps evaluate fault tolerance and system failure prediction. Defects classification and prediction is the principal significant advance in the trustworthiness evaluation of complex software systems such as open-source software since it can quickly be affected by the reliability of those systems, improves performance, and lessening the product cost.   In this context, a new prototype of the fault injection model is presented, FIBR-OSS (Fault Injection for Bug Reports in Open-Source Software). FIBR-OSS can support developers to evaluate the system performance during phase's development for its dependability attributes such as reliability and system dependability means such as fault prediction or forecasting. FIBR-OSS is used for fault speed-up to test the system's failure prediction performance. Some machine learning techniques are implemented on bug reports produced existing by the bug tracking system as datasets for failure prediction techniques, some of those machine learning techniques are used in our approach.</span>


2020 ◽  
Vol 16 (11) ◽  
pp. 1558-1569
Author(s):  
Syahana Nur�Ain Saharudin ◽  
Koh Tieng Wei ◽  
Kew Si Na

2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 389-P
Author(s):  
SATORU KODAMA ◽  
MAYUKO H. YAMADA ◽  
YUTA YAGUCHI ◽  
MASARU KITAZAWA ◽  
MASANORI KANEKO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document