Offline Spike Sorting Using Approximate Entropy

2022 ◽  
Vol 3 (2) ◽  
Author(s):  
Sajjad Farashi
Author(s):  
Guo Fang-fang ◽  
Wu Wei ◽  
Ni Hong-Xia ◽  
Fan Ying-Le

2020 ◽  
Vol 68 ◽  
pp. 6240-6254
Author(s):  
Jasper Wouters ◽  
Panagiotis Patrinos ◽  
Fabian Kloosterman ◽  
Alexander Bertrand

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elmer Guzman ◽  
Zhuowei Cheng ◽  
Paul K. Hansma ◽  
Kenneth R. Tovar ◽  
Linda R. Petzold ◽  
...  

AbstractWe developed a method to non-invasively detect synaptic relationships among neurons from in vitro networks. Our method uses microelectrode arrays on which neurons are cultured and from which propagation of extracellular action potentials (eAPs) in single axons are recorded at multiple electrodes. Detecting eAP propagation bypasses ambiguity introduced by spike sorting. Our methods identify short latency spiking relationships between neurons with properties expected of synaptically coupled neurons, namely they were recapitulated by direct stimulation and were sensitive to changing the number of active synaptic sites. Our methods enabled us to assemble a functional subset of neuronal connectivity in our cultures.


2021 ◽  
pp. 1-6
Author(s):  
David M. Garner ◽  
Gláucia S. Barreto ◽  
Vitor E. Valenti ◽  
Franciele M. Vanderlei ◽  
Andrey A. Porto ◽  
...  

Abstract Introduction: Approximate Entropy is an extensively enforced metric to evaluate chaotic responses and irregularities of RR intervals sourced from an eletrocardiogram. However, to estimate their responses, it has one major problem – the accurate determination of tolerances and embedding dimensions. So, we aimed to overt this potential hazard by calculating numerous alternatives to detect their optimality in malnourished children. Materials and methods: We evaluated 70 subjects split equally: malnourished children and controls. To estimate autonomic modulation, the heart rate was measured lacking any physical, sensory or pharmacologic stimuli. In the time series attained, Approximate Entropy was computed for tolerance (0.1→0.5 in intervals of 0.1) and embedding dimension (1→5 in intervals of 1) and the statistical significances between the groups by their Cohen’s ds and Hedges’s gs were totalled. Results: The uppermost value of statistical significance accomplished for the effect sizes for any of the combinations was −0.2897 (Cohen’s ds) and −0.2865 (Hedges’s gs). This was achieved with embedding dimension = 5 and tolerance = 0.3. Conclusions: Approximate Entropy was able to identify a reduction in chaotic response via malnourished children. The best values of embedding dimension and tolerance of the Approximate Entropy to identify malnourished children were, respectively, embedding dimension = 5 and embedding tolerance = 0.3. Nevertheless, Approximate Entropy is still an unreliable mathematical marker to regulate this.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vikram Jakkamsetti ◽  
William Scudder ◽  
Gauri Kathote ◽  
Qian Ma ◽  
Gustavo Angulo ◽  
...  

AbstractTime-to-fall off an accelerating rotating rod (rotarod) is widely utilized to evaluate rodent motor performance. We reasoned that this simple outcome could be refined with additional measures explicit in the task (however inconspicuously) to examine what we call movement sub-structure. Our goal was to characterize normal variation or motor impairment more robustly than by using time-to-fall. We also hypothesized that measures (or features) early in the sub-structure could anticipate the learning expected of a mouse undergoing serial trials. Using normal untreated and baclofen-treated movement-impaired mice, we defined these features and automated their analysis using paw video-tracking in three consecutive trials, including paw location, speed, acceleration, variance and approximate entropy. Spectral arc length yielded speed and acceleration uniformity. We found that, in normal mice, paw movement smoothness inversely correlated with rotarod time-to-fall for the three trials. Greater approximate entropy in vertical movements, and opposite changes in horizontal movements, correlated with greater first-trial time-to-fall. First-trial horizontal approximate entropy in the first few seconds predicted subsequent time-to-fall. This allowed for the separation, after only one rotarod trial, of different-weight, untreated mouse groups, and for the detection of mice otherwise unimpaired after baclofen, which displayed a time-to-fall similar to control. A machine-learning support vector machine classifier corroborated these findings. In conclusion, time-to-fall off a rotarod correlated well with several measures, including some obtained during the first few seconds of a trial, and some responsive to learning over the first two trials, allowing for predictions or preemptive experimental manipulations before learning completion.


Sign in / Sign up

Export Citation Format

Share Document