Interplay between the shoot apical meristem and lateral organs

aBIOTECH ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 178-184
Author(s):  
Chunmei Guan ◽  
Yuling Jiao
2018 ◽  
Vol 44 (2) ◽  
pp. 204-216.e6 ◽  
Author(s):  
Bihai Shi ◽  
Xiaolu Guo ◽  
Ying Wang ◽  
Yuanyuan Xiong ◽  
Jin Wang ◽  
...  

2016 ◽  
Vol 85 (4) ◽  
Author(s):  
Edyta M. Gola ◽  
Alicja Banasiak

Regularity and periodicity in the arrangements of organs in all groups of land plants raise questions about the mechanisms underlying phyllotactic pattern formation. The initiation of the lateral organs (leaves, flowers, etc.), and thus, their spatio-temporal positioning, occurs in the shoot apical meristem (SAM) and is related to the structure and organogenic activity of the meristem. In this review, we present some aspects of the diversity and stability of phyllotactic patterns in the major lineages of land plants, from bryophytes to angiosperms, in which SAM structures differ significantly. In addition, we discuss some of the possible mechanisms involved in the formation of the recurring arrangement of the lateral organs.


Development ◽  
1994 ◽  
Vol 120 (2) ◽  
pp. 405-413 ◽  
Author(s):  
D. Jackson ◽  
B. Veit ◽  
S. Hake

In this paper we describe the expression patterns of a family of homeobox genes in maize and their relationship to organogenic domains in the vegetative shoot apical meristem. These genes are related by sequence to KNOTTED1, a gene characterized by dominant neomorphic mutations which perturb specific aspects of maize leaf development. Four members of this gene family are expressed in shoot meristems and the developing stem, but not in determinate lateral organs such as leaves or floral organs. The genes show distinct expression patterns in the vegetative shoot apical meristem that together predict the site of leaf initiation and the basal limit of the vegetative ‘phytomer’ or segmentation unit of the shoot. These genes are also expressed in the inflorescence and floral meristems, where their patterns of expression are more similar, and they are not expressed in root apical meristems. These findings are discussed in relation to other studies of shoot apical meristem organization as well as possible commonality of homeobox gene function in the animal and plant kingdoms.


Development ◽  
2002 ◽  
Vol 129 (8) ◽  
pp. 1957-1965 ◽  
Author(s):  
Mary E. Byrne ◽  
Joseph Simorowski ◽  
Robert A. Martienssen

The shoot apical meristem comprises undifferentiated stem cells and their derivatives, which include founder cells for lateral organs such as leaves. Meristem maintenance and lateral organ specification are regulated in part by negative interactions between the myb domain transcription factor ASYMMETRIC LEAVES1, which is expressed in lateral organ primordia, and homeobox transcription factors which are expressed in the shoot apical meristem (knox genes). The knox gene SHOOT MERISTEMLESS (STM) negatively regulates ASYMMETRIC LEAVES1 (AS1) which, in turn, negatively regulates other knox genes including KNAT1 and KNAT2, and positively regulates the novel gene LATERAL ORGAN BOUNDARIES (LOB). Genetic interactions with a second gene, ASYMMETRIC LEAVES2 (AS2), indicate it acts at the same position in this hierarchy as AS1. We have used a second-site suppressor screen to isolate mutations in KNAT1 and we show that KNAT1 is partially redundant with STM in regulating stem cell function. Mutations in KNAT2 show no such interaction. We discuss the regulation and evolution of redundancy among knox genes.


2012 ◽  
Vol 3 (1) ◽  
pp. 3 ◽  
Author(s):  
Chui E. Wong ◽  
Mohan B. Singh ◽  
Prem L. Bhalla

The shoot apical meristem houses stem cells responsible for the continuous formation of aerial plant organs including leaves and stems throughout the life of plants. Laser-microdissection in combination with high-throughput technology such as next generation sequencing permits an in-depth analysis of molecular events associated with specific cell type of interest. Sample preparation is the most critical step in ensuring good quality RNA to be extracted from samples following laser-microdissection. Here, we optimized the sample preparation for a major legume crop, soybean. We used Farmer’s solution as a fixative and paraffin as the embedding medium for soybean shoot apical meristem tissue without the use of any specialized equipment. Shorter time for tissue fixation (two days) was found to be critical for the preservation of RNA in soybean shoot apical meristem. We further demonstrated the utility of this method for different tissues derived from soybean and rice. The method outlined here shall facilitate studies on crop plants involving laser-microdissection.


Planta ◽  
2002 ◽  
Vol 214 (6) ◽  
pp. 829-836 ◽  
Author(s):  
Andreas Mordhorst ◽  
Marijke Hartog ◽  
Mazen El Tamer ◽  
Thomas Laux ◽  
Sacco de Vries

Cell ◽  
2011 ◽  
Vol 145 (2) ◽  
pp. 242-256 ◽  
Author(s):  
Hongliang Zhu ◽  
Fuqu Hu ◽  
Ronghui Wang ◽  
Xin Zhou ◽  
Sing-Hoi Sze ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document