Comparison of Embryo and Clinical Outcomes in Different Types of Incubator Between Two Different Embryo Culture Systems

Author(s):  
Satoshi Ueno ◽  
Motoki Ito ◽  
Kiyoe Shimazaki ◽  
Tadashi Okimura ◽  
Kazuo Uchiyama ◽  
...  
2004 ◽  
Vol 21 (8) ◽  
pp. 291-295 ◽  
Author(s):  
Dalit Ben-Yosef ◽  
Ami Amit ◽  
Foad Azem ◽  
Tamar Schwartz ◽  
Tania Cohen ◽  
...  

2012 ◽  
pp. 355-365 ◽  
Author(s):  
André Monteiro da Rocha ◽  
Gary D. Smith

2020 ◽  
Author(s):  
Ji Liu ◽  
Yan-Hua Zhou ◽  
Xiao-Xiao Wang ◽  
Ling-Xi Tong ◽  
Yan-Hong Li ◽  
...  

Abstract Background: Different types of incubators have been designed for gamete and embryo culture in the past few years. The main differences of these incubators are humidity, temperature and gas control system, which play important roles in regulating the steady state of culture media. The objective of this study was to compare the effects of different types of incubators (air jacket incubators and water jacket incubators) on embryo development and clinical outcomes in human in vitro fertilization (IVF).Methods: First, the physical performances of different incubators were tested by mimicking routine IVF procedures. After that, in a randomized controlled trial, 1013 cumulus oocyte complexes from 43 patients were equally divided into two groups, fertilized and cultured in two types of incubators to analyze the effects of different types of incubators on embryo development and clinical outcomes. Results: We found that temperature recovery time in the air jacket incubator was significantly shorter than that in water jacket incubator. Although the O2 recovering time was also significantly shorter in the air jacket incubator as compared with the water jacket incubator, no significant differences were observed in the CO2 recovering time between two groups, which was also verified by pH recovering time of culture media. Besides, the temperature of culture medium in the dish covered with oil recovered more quickly in the air jacket incubators than that in water jacket incubators. However, there were no significant differences observed in the fertilization rate, Day 3 high-quality embryo formation rate, blastocyst formation rate, good blastocyst rate and clinical outcomes between two groups.Conclusions: These results indicate that the microenvironment, especially the temperature, in air jacket incubator recover faster than that in conventional water jacket incubator, however, there were no significant differences in embryo development and clinical outcomes between two types of incubators.


2007 ◽  
Vol 88 ◽  
pp. S324 ◽  
Author(s):  
L. Arenas ◽  
R. Santos ◽  
G. Garcia ◽  
P. Galache ◽  
S. Hernandez ◽  
...  

2012 ◽  
Vol 24 (1) ◽  
pp. 161 ◽  
Author(s):  
B. K. Redel ◽  
L. D. Spate ◽  
A. N. Brown ◽  
R. S. Prather

It is vital that improvements are made to current culture environments because in vitro culture systems are suboptimal compared with in vivo. A previous transcriptional profiling endeavour conducted by Bauer et al. (2010 Biol. Reprod. 83, 791–798) identified hundreds of mRNA transcripts that were mis-expressed in porcine embryos fertilized in vivo and then cultured in vitro to Day 6 compared with in vivo Day-6 embryos. Enriched in the downregulated transcripts were 4 genes involved with the one carbon pool by folate KEGG pathway. This downregulation of genes involved with folate metabolism may illustrate an impaired folate homeostasis in embryos cultured in the current culture environment. The objective of this study was to determine the effects folate had on embryo development of in vitro fertilized embryos. Porcine cumulus–oocyte complexes were matured for 44 h in M199 supplemented with epidermal growth factor (EGF), FSH and LH. Oocytes with a visible polar body were selected and fertilized in modified tris buffered medium for 5 h and then placed into porcine zygote medium 3 with 0 mM, 0.2 mM, 0.4 mM and 0.8 mM folate to find the optimal concentration of folate. Twenty-eight hours post-fertilization, cleaved embryos were selected and moved into 25-μL drops of respective culture medium and cultured to Day 6 in a water-saturated atmosphere of 5% CO2, 5% O2, 90% N2, at 38.5°C. To determine the effect folate had on development, the blastocyst rate for each treatment group was measured. Results were log-transformed and analysed by using PROC GLM in SAS (SAS Institute Inc., Cary, NC). A least-significant difference post-test comparison was completed to determine if significant differences existed between treatment groups. The percentage of cleaved embryos on Day 6 that developed to blastocyst was 56.2%, 55.9%, 66.9% and 61.8% (n = 133, 149, 135 and 135) in 0 mM, 0.2 mM folate, 0.4 mM folate and 0.8 mM, respectively. The 0.4 mM folate group tended (P = 0.07) to have a higher number of cleaved embryos that developed to the blastocyst stage. Consequently, this concentration was used for all further embryo culture experiments. Differential staining was completed to compare the number of trophectoderm and inner cell mass nuclei for embryos cultured in 0 mM or 0.4 mM folate concentrations. Staining revealed that embryos cultured with folate had an increase in number of trophectoderm (29.7 ± 1.5 vs 24.4 ± 1.4 cells; P = 0.0058) and total cell (36.9 ± 1.0 vs 31.7 ± 1.0; P = 0.0007) numbers compared with embryos cultured without folate. These results illustrate that the addition of folate to current culture medium doesn't hinder development to blastocyst and by increasing trophectoderm and total cell number may give rise to better-quality in vitro-derived embryos. It is evident that using transcriptional profiling can be a great method of identifying ways to improve embryo culture systems and, in this case, supplementing with folate. Funded by Food for the 21st Century.


2019 ◽  
Vol 34 (9) ◽  
pp. 1420-1428 ◽  
Author(s):  
Viet Phuong Thuy Nguyen ◽  
Choongki Kim ◽  
Sung-Jin Hong ◽  
Chul-Min Ahn ◽  
Jung-Sun Kim ◽  
...  

2020 ◽  
Vol 41 ◽  
pp. e7-e8
Author(s):  
A. Davis ◽  
R. Colver ◽  
B. Bopp ◽  
M. Will ◽  
E. Will ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document