An adaptive nonlinear droop control for accurate load current sharing and DC bus voltage compensation in a DC power system

Author(s):  
Xinna Tian ◽  
Yubin Wang ◽  
Fan Wang ◽  
Zheng Guo
Author(s):  
Jonghun Yun ◽  
Young-kwang Son ◽  
Hyung-June Cho ◽  
Seung-Ki Sul AE

2015 ◽  
Vol 2 (1) ◽  
pp. 61 ◽  
Author(s):  
S. J. Chiang ◽  
Yu-Min Liao ◽  
Ke-Chih Liu

The micro grid system requires battery for energy storage and power management. In which, the bi-directional DC to DC converter is the key component for maintaining the DC bus voltage and controlling the charge and discharge of the battery with or without grid support. Parallel control of multiple DC to DC converters is a critical technique to enlarge the power capacity. This paper presents two capacity limitation control methods that multiple DC to DC converters can be paralleled with distributed battery banks. The first method is the capacity limitation control with cascaded load current sense needing no control interconnection. The second method is the capacity limitation control with master-slave and cascaded current command limitation. Two methods are presented to solve the limitation of droop control method and active current sharing method respectively, and can be extended without converter number limitation theoretically. Three prototype 240W bidirectional half-bridge DC to DC converters are built and paralleled in this paper. The proposed method is confirmed with some measured results.


2019 ◽  
Vol 2019 (16) ◽  
pp. 3056-3061 ◽  
Author(s):  
Sucheng Liu ◽  
Zhongpeng Li ◽  
Wenjie Liu ◽  
Xiaodong Liu

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2995 ◽  
Author(s):  
Liang Zhang ◽  
Kang Chen ◽  
Shengbin Chi ◽  
Ling Lyu ◽  
Guowei Cai

In the direct current (DC) microgrid composed of multiple distributed generations, due to the different distances between various converters and the DC bus in the system, the difference of the line resistance will reduce the current sharing accuracy of the system. The droop control was widely used in the operation control of the DC microgrid. It was necessary to select a large droop coefficient to improve the current sharing accuracy, but a too large droop coefficient will lead to a serious bus voltage drop and affect the power quality. In view of the contradiction between the voltage regulation and load current sharing in the traditional droop control, a hierarchical control algorithm based on the improved droop control of the fuzzy logic was proposed in this paper. By improving the droop curve, the problems of voltage regulation and current sharing were solved simultaneously. The effectiveness of the algorithm was verified by simulation.


Sign in / Sign up

Export Citation Format

Share Document