scholarly journals “Chatty Devices” and edge-based activity classification

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Mike Lakoju ◽  
Amir Javed ◽  
Omer Rana ◽  
Pete Burnap ◽  
Samuelson T. Atiba ◽  
...  

AbstractWith increasing automation of manufacturing processes (focusing on technologies such as robotics and human-robot interaction), there is a realisation that the manufacturing process and the artefacts/products it produces can be better connected post-production. Built on this requirement, a “chatty" factory involves creating products which are able to send data back to the manufacturing/production environment as they are used, whilst still ensuring user privacy. The intended use of a product during design phase may different significantly from actual usage. Understanding how this data can be used to support continuous product refinement, and how the manufacturing process can be dynamically adapted based on the availability of this data provides a number of opportunities. We describe how data collected on product use can be used to: (i) classify product use; (ii) associate a label with product use using unsupervised learning—making use of edge-based analytics; (iii) transmission of this data to a cloud environment where labels can be compared across different products of the same type. Federated learning strategies are used on edge devices to ensure that any data captured from a product can be analysed locally (ensuring data privacy).

2020 ◽  
Author(s):  
Mike Lakoju ◽  
Amir Javed ◽  
Omer Rana ◽  
Peter Burnap ◽  
Samuelson Atiba ◽  
...  

Abstract With increasing automation of manufacturing processes (focusing on technologies such as robotics and human-robot interaction), there is a realisation that the manufacturing process and the artefacts/products it produces can be better connected post-production. Built on this requirement, a “chatty” factory involves creating products which are able to send data back to the manufacturing/ production environment as they are used, whilst still ensuring user privacy. The intended use of a product during design phase may different significantly from actual usage. Understanding how this data can be used to support continuous product refinement, and how the manufacturing process can be dynamically adapted based on the availability of this data provides a number of opportunities. We describe how data collected on product use be used to: (i) classify product use; (ii) associate a label with product use using unsupervised learning – making use of edge-based analytics; (iii) transmission of this data to a cloud environment where labels can be compared across different products of the same type. Federated learning strategies are used on edge devices to ensure that any data captured from a product can be analysed locally (ensuring data privacy). Using a 6th gen. Apple iPad as a “chatty device” (with acceleration, orientation, angular velocity and magnetic field sensors) we demonstrate how product use activities can achieve a classification accuracy of 99.35%. A comparison is also undertaken with the Human Activity Recognition (HAR) data set, achieving an accuracy of 98%. Our approach demonstrates how semantic activity labels can be associated with product use, and subsequently used to improve product design.


2021 ◽  
pp. 1-14
Author(s):  
Mojtaba Sharifi ◽  
Amir Zakerimanesh ◽  
Javad K. Mehr ◽  
Ali Torabi ◽  
Vivian K. Mushahwar ◽  
...  

2009 ◽  
Author(s):  
Matthew S. Prewett ◽  
Kristin N. Saboe ◽  
Ryan C. Johnson ◽  
Michael D. Coovert ◽  
Linda R. Elliott

2010 ◽  
Author(s):  
Eleanore Edson ◽  
Judith Lytle ◽  
Thomas McKenna

2020 ◽  
Author(s):  
Agnieszka Wykowska ◽  
Jairo Pérez-Osorio ◽  
Stefan Kopp

This booklet is a collection of the position statements accepted for the HRI’20 conference workshop “Social Cognition for HRI: Exploring the relationship between mindreading and social attunement in human-robot interaction” (Wykowska, Perez-Osorio & Kopp, 2020). Unfortunately, due to the rapid unfolding of the novel coronavirus at the beginning of the present year, the conference and consequently our workshop, were canceled. On the light of these events, we decided to put together the positions statements accepted for the workshop. The contributions collected in these pages highlight the role of attribution of mental states to artificial agents in human-robot interaction, and precisely the quality and presence of social attunement mechanisms that are known to make human interaction smooth, efficient, and robust. These papers also accentuate the importance of the multidisciplinary approach to advance the understanding of the factors and the consequences of social interactions with artificial agents.


2019 ◽  
Author(s):  
Cinzia Di Dio ◽  
Federico Manzi ◽  
Giulia Peretti ◽  
Angelo Cangelosi ◽  
Paul L. Harris ◽  
...  

Studying trust within human-robot interaction is of great importance given the social relevance of robotic agents in a variety of contexts. We investigated the acquisition, loss and restoration of trust when preschool and school-age children played with either a human or a humanoid robot in-vivo. The relationship between trust and the quality of attachment relationships, Theory of Mind, and executive function skills was also investigated. No differences were found in children’s trust in the play-partner as a function of agency (human or robot). Nevertheless, 3-years-olds showed a trend toward trusting the human more than the robot, while 7-years-olds displayed the reverse behavioral pattern, thus highlighting the developing interplay between affective and cognitive correlates of trust.


Sign in / Sign up

Export Citation Format

Share Document