Speed-accuracy tradeoff and information processing dynamics

1977 ◽  
Vol 41 (1) ◽  
pp. 67-85 ◽  
Author(s):  
Wayne A. Wickelgren
1983 ◽  
Vol 27 (5) ◽  
pp. 359-363
Author(s):  
Robert E. Schlegel ◽  
William F. Storm

A study was conducted to further evaluate the Manikin Task, a test of spatial orientation information processing. The objectives of the study were to determine the speed vs. accuracy tradeoff characteristics of the task and to assess performance on the task under the influence of ethyl alcohol. Response times and accuracy were measured on five subjects over a five-week period. Analysis of the data indicated a definite decline in accuracy corresponding to a forced decrease in response time. The effect of alcohol was evidenced by a change in the slope of the speed-accuracy tradeoff function.


2010 ◽  
Vol 31 (3) ◽  
pp. 130-137 ◽  
Author(s):  
Hagen C. Flehmig ◽  
Michael B. Steinborn ◽  
Karl Westhoff ◽  
Robert Langner

Previous research suggests a relationship between neuroticism (N) and the speed-accuracy tradeoff in speeded performance: High-N individuals were observed performing less efficiently than low-N individuals and compensatorily overemphasizing response speed at the expense of accuracy. This study examined N-related performance differences in the serial mental addition and comparison task (SMACT) in 99 individuals, comparing several performance measures (i.e., response speed, accuracy, and variability), retest reliability, and practice effects. N was negatively correlated with mean reaction time but positively correlated with error percentage, indicating that high-N individuals tended to be faster but less accurate in their performance than low-N individuals. The strengthening of the relationship after practice demonstrated the reliability of the findings. There was, however, no relationship between N and distractibility (assessed via measures of reaction time variability). Our main findings are in line with the processing efficiency theory, extending the relationship between N and working style to sustained self-paced speeded mental addition.


1997 ◽  
Author(s):  
Jeffry S. Kellogg ◽  
Xiangen Hu ◽  
William Marks

Author(s):  
Gerard Derosiere ◽  
David Thura ◽  
Paul Cisek ◽  
Julie Duqué

Humans and other animals often need to balance the desire to gather sensory information (to make the best choice) with the urgency to act, facing a speed-accuracy tradeoff (SAT). Given the ubiquity of SAT across species, extensive research has been devoted to understanding the computational mechanisms allowing its regulation at different timescales, including from one context to another, and from one decision to another. However, animals must frequently change their SAT on even shorter timescales - i.e., over the course of an ongoing decision - and little is known about the mechanisms that allow such rapid adaptations. The present study aimed at addressing this issue. Human subjects performed a decision task with changing evidence. In this task, subjects received rewards for correct answers but incurred penalties for mistakes. An increase or a decrease in penalty occurring halfway through the trial promoted rapid SAT shifts, favoring speeded decisions either in the early or in the late stage of the trial. Importantly, these shifts were associated with stage-specific adjustments in the accuracy criterion exploited for committing to a choice. Those subjects who decreased the most their accuracy criterion at a given decision stage exhibited the highest gain in speed, but also the highest cost in terms of performance accuracy at that time. Altogether, the current findings offer a unique extension of previous work, by suggesting that dynamic changes in accuracy criterion allow the regulation of the SAT within the timescale of a single decision.


Sign in / Sign up

Export Citation Format

Share Document