processing speed
Recently Published Documents





10.29007/qz2g ◽  
2022 ◽  
Sy Hieu Dau ◽  
Quang My Han Doan ◽  
Chiu Hy Ta ◽  
Nguyen An Khang Le ◽  
Nguyen Thanh Dat Khau

In the industrial context, there are key factors that directly affect the system’s efficiency. Higher demands for both quantity and quality in today’s market call for constant research and development of technologies for automating production and quality control. Machine vision is a solution to increase speed and accuracy in defect detection. However, applications from machine vision are only effective if there is good data input. This is the reason why a machine vision system, needs high-quality input images from a well-designed illumination system. These illumination systems are designed to highlight faults in products. Therefore, the images obtained will provide optimized data for easier image processing thus directly increase the processing speed, accuracy, and overall system performance. To achieve this goal, this paper presents a few approaches to enhance and optimize images by implements illumination techniques into a miniature model of pharmaceutical bottle assembly line using machine vision as the inspector block. In this paper, we will evaluate the critical needs of using customize illumination system for quality inspection on an assembly line.

2022 ◽  
Zeyuan Song ◽  
Anastasia Gurinovich ◽  
Marianne Nygaard ◽  
Jonas Mengel-From ◽  
Stacy Andersen ◽  

We conducted a genome-wide association study (GWAS) of Digit Symbol Substitution Test (DSST) scores administered in 4207 family members of the Long Life Family Study (LLFS). Genotype data were imputed to the HRC panel of 64,940 haplotypes resulting in ~15M genetic variants with quality score > 0.7. The results were replicated using genetic data imputed to the 1000 Genomes phase 3 reference panel from two Danish twin cohorts: the study of Middle Aged Danish Twins and the Longitudinal Study of Aging Danish Twins. The GWAS in LLFS discovered 20 rare genetic variants (minor allele frequency (MAF) < 1.0%) that reached genome-wide significance (p-value < 5x10-8). Among these, 18 variants had large protective effects on the processing speed, including rs7623455, rs9821776, rs9821587, rs78704059 on chromosome 3, which were replicated in the combined Danish twin cohort. These SNPs are located in/near two genes, THRB and RARB, that belonged to thyroid hormone receptors family that may influence speed of metabolism and cognitive aging. The gene-level tests in LLFS confirmed that these two genes are associated with processing speed.

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Lianshan Liu ◽  
Lingzhuang Meng ◽  
Weimin Zheng ◽  
Yanjun Peng ◽  
Xiaoli Wang

With the gradual introduction of deep learning into the field of information hiding, the capacity of information hiding has been greatly improved. Therefore, a solution with a higher capacity and a good visual effect had become the current research goal. A novel high-capacity information hiding scheme based on improved U-Net was proposed in this paper, which combined improved U-Net network and multiscale image analysis to carry out high-capacity information hiding. The proposed improved U-Net structure had a smaller network scale and could be used in both information hiding and information extraction. In the information hiding network, the secret image was decomposed into wavelet components through wavelet transform, and the wavelet components were hidden into image. In the extraction network, the features of the hidden image were extracted into four components, and the extracted secret image was obtained. Both the hiding network and the extraction network of this scheme used the improved U-Net structure, which preserved the details of the carrier image and the secret image to the greatest extent. The simulation experiment had shown that the capacity of this scheme was greatly improved than that of the traditional scheme, and the visual effect was good. And compared with the existing similar solution, the network size has been reduced by nearly 60%, and the processing speed has been increased by 20%. The image effect after hiding the information was improved, and the PSNR between the secret image and the extracted image was improved by 6.3 dB.

2022 ◽  
Vol 13 ◽  
Nathan Ward ◽  
Alekya Menta ◽  
Virginia Ulichney ◽  
Cristiana Raileanu ◽  
Thomas Wooten ◽  

Standing upright on stable and unstable surfaces requires postural control. Postural control declines as humans age, presenting greater risk of fall-related injury and other negative health outcomes. Secondary cognitive tasks can further impact balance, which highlights the importance of coordination between cognitive and motor processes. Past research indicates that this coordination relies on executive function (EF; the ability to control, maintain, and flexibly direct attention to achieve goals), which coincidentally declines as humans age. This suggests that secondary cognitive tasks requiring EF may exert a greater influence on balance compared to non-EF secondary tasks, and this interaction could be exaggerated among older adults. In the current study, we had younger and older adults complete two Surface Stability conditions (standing upright on stable vs. unstable surfaces) under varying Cognitive Load; participants completed EF (Shifting, Inhibiting, Updating) and non-EF (Processing Speed) secondary cognitive tasks on tablets, as well as a single task control scenario with no secondary cognitive task. Our primary balance measure of interest was sway area, which was measured with an array of wearable inertial measurement unit sensors. Replicating prior work, we found a main effect of Surface Stability with less sway on stable surfaces compared to unstable surfaces, and we found an interaction between Age and Surface Stability with older adults exhibiting significantly greater sway selectively on unstable surfaces compared to younger adults. New findings revealed a main effect of Cognitive Load on sway, with the single task condition having significantly less sway than two of the EF conditions (Updating and Shifting) and the non-EF condition (Processing Speed). We also found an interaction of Cognitive Load and Surface Stability on postural control, where Surface Stability impacted sway the most for the single task and two of the executive function conditions (Inhibition and Shifting). Interestingly, Age did not interact with Cognitive Load, suggesting that both age groups were equally impacted by secondary cognitive tasks, regardless the presence or type of secondary cognitive task. Taken together, these patterns suggest that cognitive demands vary in their impact on posture control across stable vs. unstable surfaces, and that EF involvement may not be the driving mechanism explaining cognitive-motor dual-task interference on balance.

2022 ◽  
Virginia A. Marchman ◽  
Melanie Ashland ◽  
Elizabeth C. Loi ◽  
Mónica Munévar ◽  
Kat Adams Shannon ◽  

•Associations between early language processing efficiency in toddlerhood and later standardized test performance inform the extent to which information processing skills support learning across domains.•Comparing patterns of associations in children from different clinical groups (e.g., children born full term and preterm) further informs whether neurobiological risk alters developmental pathways.•Early language processing efficiency was associated with language and pre-literacy outcomes to a similar extent for preterm and full term children, suggesting similar underlying mechanisms. •Association between processing speed and non-verbal IQ differed by group; processing speed supports learning in a broader range of domains in preterm than term children.

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 122
Joan Fitzgerald ◽  
Laura Fahey ◽  
Laurena Holleran ◽  
Pilib Ó Broin ◽  
Gary Donohoe ◽  

Cognitive resilience is the ability to withstand the negative effects of stress on cognitive functioning and is important for maintaining quality of life while aging. The UK Biobank does not have measurements of the same cognitive phenotype at distal time points. Therefore, we used education years (EY) as a proxy phenotype for past cognitive performance and current cognitive performance was based on processing speed. This represented an average time span of 40 years between past and current cognitive performance in 330,097 individuals. A confounding factor was that EY is highly polygenic and masked the genetics of resilience. To overcome this, we employed Genomics Structural Equation Modelling (GenomicSEM) to perform a genome-wide association study (GWAS)-by-subtraction using two GWAS, one GWAS of EY and resilience and a second GWAS of EY but not resilience, to generate a GWAS of Resilience. Using independent discovery and replication samples, we found 13 independent genetic loci for Resilience. Functional analyses showed enrichment in several brain regions and specific cell types. Gene-set analyses implicated the biological process “neuron differentiation”, the cellular component “synaptic part” and the “WNT signalosome”. Mendelian randomisation analysis showed a causative effect of white matter volume on cognitive resilience. These results may contribute to the neurobiological understanding of resilience.

2022 ◽  
Vol 22 (1) ◽  
Pärt Prommik ◽  
Kaspar Tootsi ◽  
Toomas Saluse ◽  
Eiki Strauss ◽  
Helgi Kolk ◽  

Abstract Background The Charlson and Elixhauser Comorbidity Indices are the most widely used comorbidity assessment methods in medical research. Both methods are adapted for use with the International Classification of Diseases, which 10th revision (ICD-10) is used by over a hundred countries in the world. Available Charlson and Elixhauser Comorbidity Index calculating methods are limited to a few applications with command-line user interfaces, all requiring specific programming language skills. This study aims to use Microsoft Excel to develop a non-programming and ICD-10 based dataset calculator for Charlson and Elixhauser Comorbidity Index and to validate its results with R- and SAS-based methods. Methods The Excel-based dataset calculator was developed using the program’s formulae, ICD-10 coding algorithms, and different weights of the Charlson and Elixhauser Comorbidity Index. Real, population-wide, nine-year spanning, index hip fracture data from the Estonian Health Insurance Fund was used for validating the calculator. The Excel-based calculator’s output values and processing speed were compared to R- and SAS-based methods. Results A total of 11,491 hip fracture patients’ comorbidities were used for validating the Excel-based calculator. The Excel-based calculator’s results were consistent, revealing no discrepancies, with R- and SAS-based methods while comparing 192,690 and 353,265 output values of Charlson and Elixhauser Comorbidity Index, respectively. The Excel-based calculator’s processing speed was slower but differing only from a few seconds up to four minutes with datasets including 6250–200,000 patients. Conclusions This study proposes a novel, validated, and non-programming-based method for calculating Charlson and Elixhauser Comorbidity Index scores. As the comorbidity calculations can be conducted in Microsoft Excel’s simple graphical point-and-click interface, the new method lowers the threshold for calculating these two widely used indices. Trial registration retrospectively registered.

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 111
Ana Jerković ◽  
Meri Matijaca ◽  
Ana Proroković ◽  
Anđela Šikić ◽  
Vana Košta ◽  

Cognitive impairment is a common complaint in people with multiple sclerosis (pwMS). The study objective was to determine the psychometric properties of the letter digit substitution test (LDST) that measures information processing speed and to investigate the impact of relevant predictors of LDST achievement in pwMS. The design was cross-sectional. The study included 87 pwMS and 154 control subjects. The validity of LDST was examined, and a hierarchical regression model was used to explore relevant predictors of LDST success. The LDST had excellent construct validity, as expressed by differences between pwMS and control subjects. Convergent validity of the LDST was supported by a significant moderate correlation with the expanded disability status scale (EDSS) (ρ = −0.36; p < 0.05) and a significantly strong correlation with the multiple sclerosis impact scale (MSIS-29) physical subscale (r = −0.64; p < 0.01). The LDTS score well differentiated the pwMS considering age, education, EDSS, disease duration, comorbidity, and medication therapy. Using the LDST as a criterion variable in pwMS results showed consistent evidence for the age, education, and EDSS impact on LDST performance. The best cut-off score of ≤35 discriminated the control and MS group. LDST proved to be a valid test for assessing information processing speed in pwMS.

2022 ◽  
Kyla A McKay ◽  
Sahl K Bedri ◽  
Ali Manouchehrinia ◽  
Leszek Stawiarz ◽  
Tomas Olsson ◽  

2022 ◽  
Vol 50 (1) ◽  
Meng Yee Lai ◽  
Jeyanthi Suppiah ◽  
Ravindran Thayan ◽  
Ilyiana Ismail ◽  
Nur Izati Mustapa ◽  

Abstract Background Current diagnosis of SARS-CoV-2 infection relies on RNA purification prior to amplification. Typical extraction methods limit the processing speed and turnaround time for SARS-CoV-2 diagnostic testing. Methods Here, we applied reverse transcription loop-mediated isothermal amplification directly onto human clinical swabs samples to amplify the RNA from SARS-CoV-2 swab samples after processing with chelating resin. Results By testing our method on 64 samples, we managed to develop an RT-LAMP assay with 95.9% sensitivity (95% CI 86 to 99.5%) and 100% specificity (95% CI 78.2–100%). Conclusion The entire process including sample processing can be completed in approximately 50 min. This method has promising potential to be applied as a fast, simple and inexpensive diagnostic tool for the detection of SARS-CoV-2.

Sign in / Sign up

Export Citation Format

Share Document