A geometrical theorem on the asymptotic space-time properties of conservation laws in a classical field theory

1969 ◽  
Vol 54 (1) ◽  
pp. 122-148 ◽  
Author(s):  
Robert G Cawley
1996 ◽  
Vol 77 (20) ◽  
pp. 4109-4113 ◽  
Author(s):  
Ian M. Anderson ◽  
Charles G. Torre

2020 ◽  
Vol 35 (37) ◽  
pp. 2050305
Author(s):  
P. K. Petrov

A simple way to construct models with early cosmological Genesis epoch is to employ bosonic fields whose Lagrangians transform homogeneously under scaling transformation. We show that in these theories, for a range of parameters defining the Lagrangian, there exists a homogeneous power-law solution in flat space-time, whose energy density vanishes, while pressure is negative (power-law Genesis). We find the condition for the legitimacy of the classical field theory description of such a situation. We note that this condition does not hold for our earlier Genesis model with vector field. We construct another model with vector field and power-law background solution in flat space-time, which is legitimately treated within classical field theory, violates the Null Energy Condition (NEC) and is stable. Upon turning on gravity, this model describes the early Genesis stage.


2004 ◽  
Vol 01 (05) ◽  
pp. 651-710 ◽  
Author(s):  
MANUEL DE LEÓN ◽  
DAVID MARTÍN DE DIEGO ◽  
AITOR SANTAMARÍA-MERINO

The multisymplectic description of Classical Field Theories is revisited, including its relation with the presymplectic formalism on the space of Cauchy data. Both descriptions allow us to give a complete scheme of classification of infinitesimal symmetries, and to obtain the corresponding conservation laws.


Author(s):  
Jędrzej Śniatycki

AbstractGeometric structure of classical field theory in Lagrangian formulation is investigated. Symmetry transformations with generators depending on higher-order derivatives are considered and the corresponding conservation laws are obtained.


Sign in / Sign up

Export Citation Format

Share Document