energy condition
Recently Published Documents


TOTAL DOCUMENTS

461
(FIVE YEARS 153)

H-INDEX

38
(FIVE YEARS 5)

Author(s):  
Jafar Sadeghi ◽  
Mehdi Shokri ◽  
Saeed Noori Gashti ◽  
Behnam Pourhassan ◽  
Prabir Rudra

In this paper, we study the traversable wormhole solutions for a logarithmic corrected [Formula: see text] model by considering two different statements of shape [Formula: see text] and redshift [Formula: see text] functions. We calculate the parameters of the model including energy density [Formula: see text], tangential pressure [Formula: see text] and radial pressure [Formula: see text] for the corresponding forms of the functions. Then, we investigate different energy conditions such as null energy condition, weak energy condition, dominant energy condition and strong energy condition for our considered cases. Finally, we explain the satisfactory conditions of energy of the models by related plots.


Author(s):  
Thomas Faulkner ◽  
Stefan Hollands ◽  
Brian Swingle ◽  
Yixu Wang

AbstractWe prove the existence of a universal recovery channel that approximately recovers states on a von Neumann subalgebra when the change in relative entropy, with respect to a fixed reference state, is small. Our result is a generalization of previous results that applied to type-I von Neumann algebras by Junge at al. [arXiv:1509.07127]. We broadly follow their proof strategy but consider here arbitrary von Neumann algebras, where qualitatively new issues arise. Our results hinge on the construction of certain analytic vectors and computations/estimations of their Araki–Masuda $$L_p$$ L p norms. We comment on applications to the quantum null energy condition.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Netta Engelhardt ◽  
Åsmund Folkestad

Abstract We prove a positive volume theorem for asymptotically AdS spacetimes: the maximal volume slice has nonnegative vacuum-subtracted volume, and the vacuum-subtracted volume vanishes if and only if the spacetime is identically pure AdS. Under the Complexity=Volume proposal, this constitutes a positive holographic complexity theorem. The result features a number of parallels with the positive energy theorem, including the assumption of an energy condition that excludes false vacuum decay (the AdS weak energy condition). Our proof is rigorously established in broad generality in four bulk dimensions, and we provide strong evidence in favor of a generalization to arbitrary dimensions. Our techniques also yield a holographic proof of Lloyd’s bound for a class of bulk spacetimes. We further establish a partial rigidity result for wormholes: wormholes with a given throat size are more complex than AdS-Schwarzschild with the same throat size.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
E. Aydiner ◽  
I. Basaran-Öz ◽  
T. Dereli ◽  
M. Sarisaman

AbstractIn this study, we propose an interacting model to explain the physical mechanism of the late time transition from matter-dominated era to the dark energy-dominated era of the Universe evolution and to obtain a scale factor a(t) representing two eras together. In the present model, we consider a minimal coupling of two scalar fields which correspond to the dark matter and dark energy interacting through a potential based on the FLRW framework. Analytical solution of this model leads to a new scale factor a(t) in the hybrid form $$a(t)=a_{0} (t/t_{0})^{\alpha } e^{ht/t_{0}}$$ a ( t ) = a 0 ( t / t 0 ) α e h t / t 0 . This peculiar result reveals that the scale factor behaving as $$a (t) \propto (t/t_{0})^{\alpha }$$ a ( t ) ∝ ( t / t 0 ) α in the range $$t/t_{0}\le t_{c}$$ t / t 0 ≤ t c corresponds to the matter-dominated era while $$a(t) \propto \exp (ht/t_{0})$$ a ( t ) ∝ exp ( h t / t 0 ) in the range $$t/t_{0}>t_{c}$$ t / t 0 > t c accounts for the dark energy-dominated era, respectively. Surprisingly, we explore that the transition from the power-law to the exponential expansion appears at the crossover time $$t_{0} \approx 9.8$$ t 0 ≈ 9.8 Gyear. We attain that the presented model leads to precisely correct results so that the crossover time $$t_{0}$$ t 0 and $$\alpha $$ α are completely consistent with the exact solution of the FLRW and re-scaled Hubble parameter $$H_{0}$$ H 0 lies within the observed limits given by Planck, CMB and SNIa data (or other combinations), which lead to consistent cosmological quantities such as the dimensionless Hubble parameter h, deceleration parameter q, jerk parameter j and EoS parameter w. We also discuss time dependent behavior of the dark energy and dark matter to show their roles on the time evolution of the universe. Additionally, we observe that all main results completely depend on the structure of the interaction potential when the parameter values are tuned to satisfy the zero energy condition. Finally, we conclude that interactions in the dark sector may play an important role on the time evolution and provides a mechanism to explain the late time transition of the Universe.


Author(s):  
Run-Qiu Yang ◽  
Rong-Gen Cai ◽  
Li Li

Abstract We show that the number of horizons of static black holes can be strongly constrained by energy conditions of matter fields. After a careful clarification on the ``interior'' of a black hole, we prove that if the interior of a static black hole satisfies strong energy condition or null energy condition, there is at most one non-degenerated inner Killing horizon behind the non-degenerated event horizon. Our result offers some universal restrictions on the number of horizons. Interestingly and importantly, it also suggests that matter not only promotes the formation of event horizon but also prevents the appearance of multiple horizons inside black holes. Furthermore, using the geometrical construction, we obtain a radially conserved quantity which is valid for general static spacetimes.


Author(s):  
Henning Bostelmann ◽  
Daniela Cadamuro ◽  
Simone Del Vecchio

AbstractFor a subalgebra of a generic CCR algebra, we consider the relative entropy between a general (not necessarily pure) quasifree state and a coherent excitationthereof. We give a unified formula for this entropy in terms of single-particle modular data. Further, we investigate changes of the relative entropy along subalgebras arising from an increasing family of symplectic subspaces; here convexity of the entropy (as usually considered for the Quantum Null Energy Condition) is replaced with lower estimates for the second derivative, composed of “bulk terms” and “boundary terms”. Our main assumption is that the subspaces are in differential modular position, a regularity condition that generalizes the usual notion of half-sided modular inclusions. We illustrate our results in relevant examples, including thermal states for the conformal U(1)-current.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Xin-Yang Wang ◽  
Jie Jiang

AbstractThe singularity at the center of charged Bañados–Teitelboim–Zanelli (BTZ) black holes is called a conical singularity. Unlike the canonical singularity in typical black holes, a conical singularity does not destroy the causality of spacetime. Due to the special property of the conical singularity, we examine the weak cosmic censorship conjecture (WCCC) using the new version of the gedanken experiment proposed by Sorce and Wald. A perturbation process wherein the spherically symmetric matter fields pass through the event horizon and fall into the black holes is considered. Assuming that the cosmological constant is obtained by the matter fields, it therefore can be seen as a dynamical variable during the process. From this perspective, according to the stability condition and the null energy condition, the first- and second-order perturbation inequalities are derived. Based on the first-order optimal condition and the second-order perturbation inequality, we show that the nearly extremal charged BTZ black hole cannot be destroyed in the above perturbation process. The result also implies that even if the singularity at the center of the black hole is conical, it still should be surrounded by the event horizon and hidden inside the black hole.


2021 ◽  
Vol 12 (5) ◽  
pp. 6978-6990

The current perusal investigation was carried out for the result of a chemical reaction and Schmidt number on magnetohydrodynamic fluid flow towards a Sphere with Rosseland approximation. The Roseland estimate is utilized to portray the radiative heat transition in the energy condition. The crucial equations of continuity, thermal and solutal boundary layers are reassembled into sets of nonlinear models. The highly nonlinear partial differential models are converted into a nonlinear ordinary differential structure through the proper dimensionless quantities. The numerical arrangements of standard differential structures have been procured by applying the fourth-order Runge-Kutta-Fehlberg strategy with shooting technique through MATHEMATICA software. The quantities of physical interest are graphically presented and discussed in detail. Correlation with past writing results is additionally done and is discovered to be excellent concurrence with those distributed before.


2021 ◽  
Vol 13 (6) ◽  
pp. 665-672
Author(s):  
Kevin M. Fraley ◽  
Martin D. Robards ◽  
Johanna Vollenweider ◽  
Alex Whiting ◽  
Tahzay Jones ◽  
...  

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Ayan Banerjee ◽  
Anirudh Pradhan ◽  
Takol Tangphati ◽  
Farook Rahaman

AbstractFollowing the recent theory of f(Q) gravity, we continue to investigate the possible existence of wormhole geometries, where Q is the non-metricity scalar. Recently, the non-metricity scalar and the corresponding field equations have been studied for some spherically symmetric configurations in Mustafa (Phys Lett B 821:136612, 2021) and Lin and Zhai (Phys Rev D 103:124001, 2021). One can note that field equations are different in these two studies. Following Lin and Zhai (2021), we systematically study the field equations for wormhole solutions and found the violation of null energy conditions in the throat neighborhood. More specifically, considering specific choices for the f(Q) form and for constant redshift with different shape functions, we present a class of solutions for static and spherically symmetric wormholes. Our survey indicates that wormhole solutions could not exist for specific form function $$f(Q)= Q+ \alpha Q^2$$ f ( Q ) = Q + α Q 2 . To summarize, exact wormhole models can be constructed with violation of the null energy condition throughout the spacetime while being $$\rho \ge 0$$ ρ ≥ 0 and vice versa.


Sign in / Sign up

Export Citation Format

Share Document